Yang Shen, Wencheng Qi, Shaoyu Li, Zilin Yang, Kaijia Chen
{"title":"Numerical simulation of copper-contaminated sediment consolidation and remediation through vacuum electro-osmosis","authors":"Yang Shen, Wencheng Qi, Shaoyu Li, Zilin Yang, Kaijia Chen","doi":"10.1016/j.gete.2025.100655","DOIUrl":null,"url":null,"abstract":"<div><div>The combination of vacuum electro-osmosis treatment and electrokinetic remediation allows for the simultaneous consolidation and remediation of contaminated sediments, involving multiple coupled fields such as electrical field, hydraulic field, mechanical field, and chemical field. This study couples the charge conservation, vacuum electro-osmosis consolidation, and contaminant transport equations under vacuum electro-osmosis conditions to establish a numerical model for the consolidation and remediation process. Laboratory experiments were conducted for comparative analyses. The numerical results show that the electric field intensity decays from both sides towards the center. However, the other positions align well with the experimental results, indicating the ability of the numerical model to reflect the non-uniform distribution of soil potential. The anode and cathode regions become negative pressure centers, resulting in an increasing seepage velocity towards the negative pressure centers. The numerical results accurately capture the trend of pore water pressure development before 40 h, although the absolute value obtained after 40 h is slightly overestimated. Additionally, the numerical results demonstrate a 47% removal efficiency of copper at the anode after 48 h, which is consistent with the experimental results. The distribution of electric field and contaminants are affected by the shape of the electrode board.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"41 ","pages":"Article 100655"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380825000206","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The combination of vacuum electro-osmosis treatment and electrokinetic remediation allows for the simultaneous consolidation and remediation of contaminated sediments, involving multiple coupled fields such as electrical field, hydraulic field, mechanical field, and chemical field. This study couples the charge conservation, vacuum electro-osmosis consolidation, and contaminant transport equations under vacuum electro-osmosis conditions to establish a numerical model for the consolidation and remediation process. Laboratory experiments were conducted for comparative analyses. The numerical results show that the electric field intensity decays from both sides towards the center. However, the other positions align well with the experimental results, indicating the ability of the numerical model to reflect the non-uniform distribution of soil potential. The anode and cathode regions become negative pressure centers, resulting in an increasing seepage velocity towards the negative pressure centers. The numerical results accurately capture the trend of pore water pressure development before 40 h, although the absolute value obtained after 40 h is slightly overestimated. Additionally, the numerical results demonstrate a 47% removal efficiency of copper at the anode after 48 h, which is consistent with the experimental results. The distribution of electric field and contaminants are affected by the shape of the electrode board.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.