Marie Baïsset , Loïc Labrousse , Philippe Yamato , Anaïs Cochet
{"title":"Stress-controlled reaction pattern in the layered lower crust: Field evidence","authors":"Marie Baïsset , Loïc Labrousse , Philippe Yamato , Anaïs Cochet","doi":"10.1016/j.epsl.2025.119270","DOIUrl":null,"url":null,"abstract":"<div><div>Stress can strongly modify the mechanical and transport properties of rocks. This effect is particularly important for metamorphic equilibria in subduction zones where metamorphic reactions and deformation are often concomitant. However, the impact of stress on the propagation of high pressure metamorphic reactions remains largely under-explored. The island of Holsnøy (Norway) shows incipient eclogitization affecting layered continental granulites along shear zones and puzzling finger-shaped structures. While eclogite shear zones suggest that reaction progress is controlled by strain, a mechanism is still required to explain the propagation of finger-shaped reaction fronts in adjacent low-strain domains. Here, we present a detailed structural analysis of the partially eclogitized Holsnøy massif that highlights the relationship between fingers and shear zones in the anisotropic granulite. We show that these structures are not randomly distributed. Finger-shaped eclogite fronts preferentially propagate along the granulite foliation when layering is at high angle to the local maximal principal stress <em>σ</em><sub>1</sub>. This feature can be described using the Damköhler number from the theory of reactive transport. Conjunction of anisotropic eclogitization kinetics and anisotropic stress state actually controls the possible development of finger-shaped reaction fronts.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"657 ","pages":"Article 119270"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X2500069X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Stress can strongly modify the mechanical and transport properties of rocks. This effect is particularly important for metamorphic equilibria in subduction zones where metamorphic reactions and deformation are often concomitant. However, the impact of stress on the propagation of high pressure metamorphic reactions remains largely under-explored. The island of Holsnøy (Norway) shows incipient eclogitization affecting layered continental granulites along shear zones and puzzling finger-shaped structures. While eclogite shear zones suggest that reaction progress is controlled by strain, a mechanism is still required to explain the propagation of finger-shaped reaction fronts in adjacent low-strain domains. Here, we present a detailed structural analysis of the partially eclogitized Holsnøy massif that highlights the relationship between fingers and shear zones in the anisotropic granulite. We show that these structures are not randomly distributed. Finger-shaped eclogite fronts preferentially propagate along the granulite foliation when layering is at high angle to the local maximal principal stress σ1. This feature can be described using the Damköhler number from the theory of reactive transport. Conjunction of anisotropic eclogitization kinetics and anisotropic stress state actually controls the possible development of finger-shaped reaction fronts.
期刊介绍:
Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.