Insights into different microwave-activated persulfate systems for chlorpyrifos degradation in soil: Impacts of soil properties, toxicity, and energy consumption

Xiao Shang , Li Gao , Zheng Sun , Zhenming Liang , Xitao Liu , Chunye Lin , Mengchang He , Wei Ouyang
{"title":"Insights into different microwave-activated persulfate systems for chlorpyrifos degradation in soil: Impacts of soil properties, toxicity, and energy consumption","authors":"Xiao Shang ,&nbsp;Li Gao ,&nbsp;Zheng Sun ,&nbsp;Zhenming Liang ,&nbsp;Xitao Liu ,&nbsp;Chunye Lin ,&nbsp;Mengchang He ,&nbsp;Wei Ouyang","doi":"10.1016/j.seh.2025.100139","DOIUrl":null,"url":null,"abstract":"<div><div>Different microwave-activated persulfate (MP) systems exhibit considerable degradation efficiency towards chlorpyrifos in soil, a typical organophosphorus pesticide. However, only considering degradation efficiency cannot fully verify the effectiveness of MP systems in remediating chlorpyrifos-contaminated soil. Multiple evaluations, including soil characterization, toxicity assessment, and energy consumption estimation, were conducted to investigate the effectiveness of MP technologies. While the differences in soil morphology and structure were relatively small, soil dissolved organic matter varied with different MP treatments. Compared with parent compounds, the predicted toxicity of the degradation products was reduced. The acute toxicity and phytotoxicity of the solid phase reduced after the MP treatments, with the germination rate, and stem and root lengths of tall fescue being increased. However, the toxicity of residual oxidants in the liquid phase cannot be ignored, reducing ∼35% germination rate in ryegrass seed and luminescence intensity in bacteria. A constant microwave temperature was beneficial for degrading lower concentrations of chlorpyrifos, whereas constant microwave power was beneficial for degrading higher concentrations of chlorpyrifos. In short, the MP technology may be suitable for remediating chlorpyrifos-contaminated soil, and a comprehensive evaluation provides a theoretical basis for its practical application in soil remediation.</div></div>","PeriodicalId":94356,"journal":{"name":"Soil & Environmental Health","volume":"3 2","pages":"Article 100139"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Environmental Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949919425000123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Different microwave-activated persulfate (MP) systems exhibit considerable degradation efficiency towards chlorpyrifos in soil, a typical organophosphorus pesticide. However, only considering degradation efficiency cannot fully verify the effectiveness of MP systems in remediating chlorpyrifos-contaminated soil. Multiple evaluations, including soil characterization, toxicity assessment, and energy consumption estimation, were conducted to investigate the effectiveness of MP technologies. While the differences in soil morphology and structure were relatively small, soil dissolved organic matter varied with different MP treatments. Compared with parent compounds, the predicted toxicity of the degradation products was reduced. The acute toxicity and phytotoxicity of the solid phase reduced after the MP treatments, with the germination rate, and stem and root lengths of tall fescue being increased. However, the toxicity of residual oxidants in the liquid phase cannot be ignored, reducing ∼35% germination rate in ryegrass seed and luminescence intensity in bacteria. A constant microwave temperature was beneficial for degrading lower concentrations of chlorpyrifos, whereas constant microwave power was beneficial for degrading higher concentrations of chlorpyrifos. In short, the MP technology may be suitable for remediating chlorpyrifos-contaminated soil, and a comprehensive evaluation provides a theoretical basis for its practical application in soil remediation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
期刊最新文献
The biomineralization process of Ochrobactrum EEELCW01 and its implication for arsenic immobilization Systematic evaluation of soil-based zeolite materials for the remediation of metal(loid)-contaminated water bodies Insights into different microwave-activated persulfate systems for chlorpyrifos degradation in soil: Impacts of soil properties, toxicity, and energy consumption Germanium in the environment: Current knowledge and gap identification Risk assessment based on Cr, Mn, Co, Ni, Cu, Zn, Ba, Pb, and Sc contents in soils and blood Pb levels in children: Seasonable variations and Monte Carlo simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1