Qiurong Ren , Qian Zhang , Yangyang Liu , Shuai Li , Jianqin Zhang , Yanli Wang , Abeer El Wakil , Bernard Moussian , Jianzhen Zhang
{"title":"PEI-SWNT improves RNAi efficiency in Locusta migratoria via dsRNA injection delivery system","authors":"Qiurong Ren , Qian Zhang , Yangyang Liu , Shuai Li , Jianqin Zhang , Yanli Wang , Abeer El Wakil , Bernard Moussian , Jianzhen Zhang","doi":"10.1016/j.pestbp.2025.106361","DOIUrl":null,"url":null,"abstract":"<div><div>The instability of double-stranded RNA (dsRNA) restricts the application of RNA interference (RNAi) technology in agricultural pest management. Various types of nanocarriers have been developed and employed for the stable delivery of dsRNA. Nonetheless, it remains unclear which type of nanomaterial could deliver dsRNA stably and efficiently for gene knockdown in <em>Locusta migratoria</em>. In this study, we evaluated the ability of three biocompatible and low-toxicity inorganic nanomaterials—polyethylenimine (PEI)-functionalized single-walled carbon nanotube (PEI-SWNT), polyethylenimine-functionalized carbon quantum dots (PEI-CQDs), and layered double hydroxide (LDH)—to bind and stabilize dsRNA. The results revealed that, compared to PEI-CQDs and LDH, PEI-SWNT more effectively protected dsRNA from degradation in locust gut fluids, across various temperatures, and under different pH conditions. Furthermore, we investigated the efficacy of PEI-SWNT/dsRNA complexes in suppressing endogenous genes in locusts through both injection and oral administration methods. Compared to bare dsRNA, PEI-SWNT/dsRNA complexes enhanced RNAi efficiency by up to 46.0 % and increased mortality by up to 39.0 %. Moderate levels of PEI-SWNT could improve the germination rate of wheat, while not affecting leaf growth in the short term. To our knowledge, this study is the first to apply PEI-SWNT inorganic nanomaterials in insects, which provides a foundational basis and compelling evidence for the development of nanomaterial-based nucleic acid pesticides.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":"209 ","pages":"Article 106361"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesticide Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048357525000744","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The instability of double-stranded RNA (dsRNA) restricts the application of RNA interference (RNAi) technology in agricultural pest management. Various types of nanocarriers have been developed and employed for the stable delivery of dsRNA. Nonetheless, it remains unclear which type of nanomaterial could deliver dsRNA stably and efficiently for gene knockdown in Locusta migratoria. In this study, we evaluated the ability of three biocompatible and low-toxicity inorganic nanomaterials—polyethylenimine (PEI)-functionalized single-walled carbon nanotube (PEI-SWNT), polyethylenimine-functionalized carbon quantum dots (PEI-CQDs), and layered double hydroxide (LDH)—to bind and stabilize dsRNA. The results revealed that, compared to PEI-CQDs and LDH, PEI-SWNT more effectively protected dsRNA from degradation in locust gut fluids, across various temperatures, and under different pH conditions. Furthermore, we investigated the efficacy of PEI-SWNT/dsRNA complexes in suppressing endogenous genes in locusts through both injection and oral administration methods. Compared to bare dsRNA, PEI-SWNT/dsRNA complexes enhanced RNAi efficiency by up to 46.0 % and increased mortality by up to 39.0 %. Moderate levels of PEI-SWNT could improve the germination rate of wheat, while not affecting leaf growth in the short term. To our knowledge, this study is the first to apply PEI-SWNT inorganic nanomaterials in insects, which provides a foundational basis and compelling evidence for the development of nanomaterial-based nucleic acid pesticides.
期刊介绍:
Pesticide Biochemistry and Physiology publishes original scientific articles pertaining to the mode of action of plant protection agents such as insecticides, fungicides, herbicides, and similar compounds, including nonlethal pest control agents, biosynthesis of pheromones, hormones, and plant resistance agents. Manuscripts may include a biochemical, physiological, or molecular study for an understanding of comparative toxicology or selective toxicity of both target and nontarget organisms. Particular interest will be given to studies on the molecular biology of pest control, toxicology, and pesticide resistance.
Research Areas Emphasized Include the Biochemistry and Physiology of:
• Comparative toxicity
• Mode of action
• Pathophysiology
• Plant growth regulators
• Resistance
• Other effects of pesticides on both parasites and hosts.