{"title":"A low ionosphere occultation observation method based on differential weight separation","authors":"Jialiang Zhong;Sijia Han;Caiyun Wang;Wei Guo","doi":"10.1029/2024RS008152","DOIUrl":null,"url":null,"abstract":"Radio occultation observation has garnered significant attention owing to its low-cost, all-weather, and global coverage feature. However, traditional occultation inversion methods lead to error accumulation due to assumptions that are not entirely suitable in the real ionospheric environment, resulting in poor performance in the low ionosphere (D, E layers). In this article, we propose a new method for inverting the electron density in low ionosphere using high-precision 50 Hz occultation data. This method can eliminate the fixed constant term of 50 Hz data and obtain a sharper weighting function through epoch differencing. The inversion results have a good consistency with the results of the ionosonde, with a correlation coefficient of 0.92 and a determination coefficient of 0.85. In addition, the new method can retrieve local details of electron density profiles and capture sporadic E layer (Es), providing support for the study of Es layer morphology and structure.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"60 2","pages":"1-14"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Science","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10909393/","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Radio occultation observation has garnered significant attention owing to its low-cost, all-weather, and global coverage feature. However, traditional occultation inversion methods lead to error accumulation due to assumptions that are not entirely suitable in the real ionospheric environment, resulting in poor performance in the low ionosphere (D, E layers). In this article, we propose a new method for inverting the electron density in low ionosphere using high-precision 50 Hz occultation data. This method can eliminate the fixed constant term of 50 Hz data and obtain a sharper weighting function through epoch differencing. The inversion results have a good consistency with the results of the ionosonde, with a correlation coefficient of 0.92 and a determination coefficient of 0.85. In addition, the new method can retrieve local details of electron density profiles and capture sporadic E layer (Es), providing support for the study of Es layer morphology and structure.
期刊介绍:
Radio Science (RDS) publishes original scientific contributions on radio-frequency electromagnetic-propagation and its applications. Contributions covering measurement, modelling, prediction and forecasting techniques pertinent to fields and waves - including antennas, signals and systems, the terrestrial and space environment and radio propagation problems in radio astronomy - are welcome. Contributions may address propagation through, interaction with, and remote sensing of structures, geophysical media, plasmas, and materials, as well as the application of radio frequency electromagnetic techniques to remote sensing of the Earth and other bodies in the solar system.