{"title":"Modular Arithmetic of Microwave Frequency Combs Generated by a Modulated Photonic Oscillator","authors":"Georgia Himona;Yannis Kominis","doi":"10.1109/JPHOT.2025.3541933","DOIUrl":null,"url":null,"abstract":"This study explores the dynamics of optically injected semiconductor lasers under current modulation by periodic pulse sequences of various characteristics, focusing on the generation and control of microwave frequency combs (MFCs). Using simplified one-dimensional models –Poincaré circle maps–, the system's response to Dirac-delta, rectangular, and Gaussian pulse trains is analyzed. Modulation parameters such as amplitude, pulse width, and frequency detuning govern the emergence of frequency-locked states and chaotic oscillations, leading to distinct spectral outputs. A modular arithmetic relation between the frequencies of the modulation and the internal oscillation is shown to result in integer and fractional frequency division. The findings offer insights into tuning MFCs for applications in high-resolution measurement, microwave photonics, and data transmission.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 2","pages":"1-9"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10884871","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10884871/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the dynamics of optically injected semiconductor lasers under current modulation by periodic pulse sequences of various characteristics, focusing on the generation and control of microwave frequency combs (MFCs). Using simplified one-dimensional models –Poincaré circle maps–, the system's response to Dirac-delta, rectangular, and Gaussian pulse trains is analyzed. Modulation parameters such as amplitude, pulse width, and frequency detuning govern the emergence of frequency-locked states and chaotic oscillations, leading to distinct spectral outputs. A modular arithmetic relation between the frequencies of the modulation and the internal oscillation is shown to result in integer and fractional frequency division. The findings offer insights into tuning MFCs for applications in high-resolution measurement, microwave photonics, and data transmission.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.