Spiking Reinforcement Learning Enhanced by Bioinspired Event Source of Multi-Dendrite Spiking Neuron and Dynamic Thresholds

IF 15.3 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Ieee-Caa Journal of Automatica Sinica Pub Date : 2025-03-03 DOI:10.1109/JAS.2024.124551
Xingyue Liang;Qiaoyun Wu;Yun Zhou;Chunyu Tan;Hongfu Yin;Changyin Sun
{"title":"Spiking Reinforcement Learning Enhanced by Bioinspired Event Source of Multi-Dendrite Spiking Neuron and Dynamic Thresholds","authors":"Xingyue Liang;Qiaoyun Wu;Yun Zhou;Chunyu Tan;Hongfu Yin;Changyin Sun","doi":"10.1109/JAS.2024.124551","DOIUrl":null,"url":null,"abstract":"Deep reinforcement learning (DRL) achieves success through the representational capabilities of deep neural networks (DNNs). Compared to DNNs, spiking neural networks (SNNs), known for their binary spike information processing, exhibit more biological characteristics. However, the challenge of using SNNs to simulate more biologically characteristic neuronal dynamics to optimize decision-making tasks remains, directly related to the information integration and transmission in SNNs. Inspired by the advanced computational power of dendrites in biological neurons, we propose a multi-dendrite spiking neuron (MDSN) model based on Multi-compartment spiking neurons (MCN), expanding dendrite types from two to multiple and deriving the analytical solution of somatic membrane potential. We apply the MDSN to deep distributional reinforcement learning to enhance its performance in executing complex decision-making tasks. The proposed model can effectively and adaptively integrate and transmit meaningful information from different sources. Our model uses a bioinspired event-enhanced dendrite structure to emphasize features. Meanwhile, by utilizing dynamic membrane potential thresholds, it adaptively maintains the homeostasis of MDSN. Extensive experiments on Atari games show that the proposed model outperforms some state-of-the-art spiking distributional RL models by a significant margin.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"12 3","pages":"618-629"},"PeriodicalIF":15.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10909371/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Deep reinforcement learning (DRL) achieves success through the representational capabilities of deep neural networks (DNNs). Compared to DNNs, spiking neural networks (SNNs), known for their binary spike information processing, exhibit more biological characteristics. However, the challenge of using SNNs to simulate more biologically characteristic neuronal dynamics to optimize decision-making tasks remains, directly related to the information integration and transmission in SNNs. Inspired by the advanced computational power of dendrites in biological neurons, we propose a multi-dendrite spiking neuron (MDSN) model based on Multi-compartment spiking neurons (MCN), expanding dendrite types from two to multiple and deriving the analytical solution of somatic membrane potential. We apply the MDSN to deep distributional reinforcement learning to enhance its performance in executing complex decision-making tasks. The proposed model can effectively and adaptively integrate and transmit meaningful information from different sources. Our model uses a bioinspired event-enhanced dendrite structure to emphasize features. Meanwhile, by utilizing dynamic membrane potential thresholds, it adaptively maintains the homeostasis of MDSN. Extensive experiments on Atari games show that the proposed model outperforms some state-of-the-art spiking distributional RL models by a significant margin.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
EMpowerment of PArents in THe Intensive Care Questionnaire: Translation and Validation in Italian PICUs
IF 4.1 2区 医学Pediatric Critical Care MedicinePub Date : 2017-02-01 DOI: 10.1097/PCC.0000000000001031
A. Wolfler, A. Giannini, Martina Finistrella, I. Salvo, E. Calderini, G. Frasson, I. Dall’Oglio, Michela Di Furia, Rossella Iuzzolino, M. Musicco, J. Latour
来源期刊
Ieee-Caa Journal of Automatica Sinica
Ieee-Caa Journal of Automatica Sinica Engineering-Control and Systems Engineering
CiteScore
23.50
自引率
11.00%
发文量
880
期刊介绍: The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control. Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.
期刊最新文献
A Diffusion Model for Traffic Data Imputation Multi-Scale Time Series Segmentation Network Based on Eddy Current Testing for Detecting Surface Metal Defects Inside back cover Inside front cover Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1