{"title":"Ultra-Compact Silicon-Based 1×8 Power Splitter Based on Digital Metamaterials","authors":"Jiazhu Duan;Cangli Liu;Jiancheng Zeng;Yongquan Luo;Li Liu;Xiangjie Zhao;Dayong Zhang","doi":"10.1109/LPT.2025.3540921","DOIUrl":null,"url":null,"abstract":"We present the design and experimental verification of an ultra-compact <inline-formula> <tex-math>$1\\times 8$ </tex-math></inline-formula> power splitter utilizing digital metamaterials. Our splitter leverages the direct binary search algorithm to optimize the pixelated design space, ensuring symmetric and efficient power distribution across the eight output waveguides. This design achieves a notably small footprint, low insertion loss, and excellent uniformity performance at the communication wavelength of 1550 nm. To validate our approach, we fabricated a <inline-formula> <tex-math>$1\\times 8$ </tex-math></inline-formula> power splitter on a silicon-on-insulator (SOI) platform, featuring ultra-compact length and space of just <inline-formula> <tex-math>$5.33~\\mu $ </tex-math></inline-formula>m and <inline-formula> <tex-math>$56.12~\\mu $ </tex-math></inline-formula>m2 respectively. This size represents a reduction of 1-2 orders of magnitude compared to previously reported values. Experimental results reveal an impressive insertion loss of 0.66 dB and a good uniformity of 0.42 dB at the center wavelength. Furthermore, the total loss remains below 1 dB across a wavelength range spanning from 1542.2 nm to 1553.5 nm. When compared to existing solutions, our designed splitter demonstrates superior performance in terms of size, insertion loss and uniformity. These attributes make this high-performance <inline-formula> <tex-math>$1\\times 8$ </tex-math></inline-formula> power splitter a promising candidate for applications in large-scale on-chip optical networks and optical phased arrays.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"37 6","pages":"317-320"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10879595/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We present the design and experimental verification of an ultra-compact $1\times 8$ power splitter utilizing digital metamaterials. Our splitter leverages the direct binary search algorithm to optimize the pixelated design space, ensuring symmetric and efficient power distribution across the eight output waveguides. This design achieves a notably small footprint, low insertion loss, and excellent uniformity performance at the communication wavelength of 1550 nm. To validate our approach, we fabricated a $1\times 8$ power splitter on a silicon-on-insulator (SOI) platform, featuring ultra-compact length and space of just $5.33~\mu $ m and $56.12~\mu $ m2 respectively. This size represents a reduction of 1-2 orders of magnitude compared to previously reported values. Experimental results reveal an impressive insertion loss of 0.66 dB and a good uniformity of 0.42 dB at the center wavelength. Furthermore, the total loss remains below 1 dB across a wavelength range spanning from 1542.2 nm to 1553.5 nm. When compared to existing solutions, our designed splitter demonstrates superior performance in terms of size, insertion loss and uniformity. These attributes make this high-performance $1\times 8$ power splitter a promising candidate for applications in large-scale on-chip optical networks and optical phased arrays.
期刊介绍:
IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.