{"title":"Tightly-Coupled 6DoF Localization in Complex Environments With GNSS Raw Data","authors":"Yanfang Shi;Baowang Lian;Yonghong Zeng;Ernest Kurniawan","doi":"10.1109/TITS.2025.3528888","DOIUrl":null,"url":null,"abstract":"In large-scale urban environments, precise six-degree-of-freedom (6DOF) pose estimation is essential for vehicles and robots to perform autonomous driving and exploration, as well as to achieve high intelligence and full autonomy of Unmanned Aerial Vehicles (UAV). Achieving 6DOF pose estimation in Global Navigation Satellite System (GNSS)-denied environments is challenging. The performance of relative 6DOF localization systems based on Light Detection and Ranging (LiDAR), vision, and inertial data is easily affected by environmental conditions, leading to error accumulation and a significant decrease in estimation accuracy in complex environments. To address this issue, we propose a tightly coupled framework based on nonlinear optimization for vision, LiDAR, inertial, and GNSS raw data. In the experimental section, we validate the effectiveness of the proposed optimization factor model for GNSS data, LiDAR data, and visual data in improving position and orientation estimation accuracy through simulations. Additionally, we use real datasets to compare the proposed algorithm with several existing open-source programs in terms of computational efficiency, pose estimation accuracy, worst-case scenarios, and reliability. The experimental results show that, although the total processing time increases, the position estimation accuracy and orientation estimation accuracy of the proposed fusion algorithm improve by at least 58.0%. Overall, the proposed tightly-coupled algorithm outperforms the existing methods.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"26 3","pages":"3369-3386"},"PeriodicalIF":7.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10851325/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
In large-scale urban environments, precise six-degree-of-freedom (6DOF) pose estimation is essential for vehicles and robots to perform autonomous driving and exploration, as well as to achieve high intelligence and full autonomy of Unmanned Aerial Vehicles (UAV). Achieving 6DOF pose estimation in Global Navigation Satellite System (GNSS)-denied environments is challenging. The performance of relative 6DOF localization systems based on Light Detection and Ranging (LiDAR), vision, and inertial data is easily affected by environmental conditions, leading to error accumulation and a significant decrease in estimation accuracy in complex environments. To address this issue, we propose a tightly coupled framework based on nonlinear optimization for vision, LiDAR, inertial, and GNSS raw data. In the experimental section, we validate the effectiveness of the proposed optimization factor model for GNSS data, LiDAR data, and visual data in improving position and orientation estimation accuracy through simulations. Additionally, we use real datasets to compare the proposed algorithm with several existing open-source programs in terms of computational efficiency, pose estimation accuracy, worst-case scenarios, and reliability. The experimental results show that, although the total processing time increases, the position estimation accuracy and orientation estimation accuracy of the proposed fusion algorithm improve by at least 58.0%. Overall, the proposed tightly-coupled algorithm outperforms the existing methods.
期刊介绍:
The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.