{"title":"D-TLDetector: Advancing Traffic Light Detection With a Lightweight Deep Learning Model","authors":"Yinjie Huang;Fuyuan Wang","doi":"10.1109/TITS.2024.3522195","DOIUrl":null,"url":null,"abstract":"Traffic signal light detection poses significant challenges in the intelligent driving sector, with high precision and efficiency being crucial for system safety. Advances in deep learning have led to significant improvements in image object detection. However, existing methods continue to struggle with balancing detection speed and accuracy. We propose a lightweight model for traffic light detection that uses a streamlined backbone network and a Low-GD neck architecture. The model’s backbone employs structured reparameterization and lightweight Vision Transformers, using multi-branch and Feed-Forward Network structures to boost informational richness and positional awareness, respectively. The Neck network utilizes the Low-GD structure to enhance the aggregation and integration of multi-scale features, reducing information loss during cross-layer exchanges. We introduce a data augmentation strategy using Stable Diffusion to expand our traffic light dataset in complex weather conditions like fog, rain, and snow, improving model generalization. Our method excels on the YCTL2024 traffic light dataset, achieving a detection speed of 135 FPS and 98.23% accuracy, with only 1.3M model parameters. Testing on the Bosch Small Traffic Lights Dataset confirms the method’s strong generalization capabilities. This suggests that our proposed method can effectively provide accurate and real-time traffic light detection.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"26 3","pages":"3917-3933"},"PeriodicalIF":7.9000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10834444/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Traffic signal light detection poses significant challenges in the intelligent driving sector, with high precision and efficiency being crucial for system safety. Advances in deep learning have led to significant improvements in image object detection. However, existing methods continue to struggle with balancing detection speed and accuracy. We propose a lightweight model for traffic light detection that uses a streamlined backbone network and a Low-GD neck architecture. The model’s backbone employs structured reparameterization and lightweight Vision Transformers, using multi-branch and Feed-Forward Network structures to boost informational richness and positional awareness, respectively. The Neck network utilizes the Low-GD structure to enhance the aggregation and integration of multi-scale features, reducing information loss during cross-layer exchanges. We introduce a data augmentation strategy using Stable Diffusion to expand our traffic light dataset in complex weather conditions like fog, rain, and snow, improving model generalization. Our method excels on the YCTL2024 traffic light dataset, achieving a detection speed of 135 FPS and 98.23% accuracy, with only 1.3M model parameters. Testing on the Bosch Small Traffic Lights Dataset confirms the method’s strong generalization capabilities. This suggests that our proposed method can effectively provide accurate and real-time traffic light detection.
期刊介绍:
The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.