Functional covalent organic framework H2S sensors for periodontitis monitoring and antibacterial treatment†

IF 2.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY New Journal of Chemistry Pub Date : 2025-02-19 DOI:10.1039/D4NJ05111D
Chenkai Chu, Xiao Lian, Qian Zheng, Yongxin Tao, Yong Qin and Jinmin Wang
{"title":"Functional covalent organic framework H2S sensors for periodontitis monitoring and antibacterial treatment†","authors":"Chenkai Chu, Xiao Lian, Qian Zheng, Yongxin Tao, Yong Qin and Jinmin Wang","doi":"10.1039/D4NJ05111D","DOIUrl":null,"url":null,"abstract":"<p >Periodontitis is a chronic disease that can lead to irreversible tooth loss and decreased quality of life, highlighting the importance of timely monitoring. Meanwhile, hydrogen sulfide (H<small><sub>2</sub></small>S) in saliva, produced by periodontal pathogens, is a significant biomarker for monitoring periodontitis. However, the simple and portable operation required to achieve high sensitivity remains a technical challenge for directly sensing exhaled breath. In this study, by integrating the fluorescent indicator (sodium 1-pyrenebutyrate, PB) into a covalent organic framework (COF, EB-TFP), an indicator displacement assay (IDA)-based fluorescence enhanced gas sensor (EB-TFP@PB) was constructed. With the selective binding of H<small><sub>2</sub></small>S to EB-TFP, the sensor substantiated excellent sensitivity, with a limit of detection (LOD) of 1.44 ppb for H<small><sub>2</sub></small>S gas. In addition, EB-TFP@PB showed selective antibacterial activity against <em>Staphylococcus aureus</em> (<em>S. aureus</em>) under non-illuminated conditions. The antibacterial mechanism of EB-TFP@PB was further investigated using electron microscopy-related techniques. This work not only offers a reliable and sensitive design for noninvasive medical diagnosis of H<small><sub>2</sub></small>S detection based on the IDA strategy but also provides a new idea for developing highly selective antibacterial COF composite materials.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 10","pages":" 4198-4204"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d4nj05111d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Periodontitis is a chronic disease that can lead to irreversible tooth loss and decreased quality of life, highlighting the importance of timely monitoring. Meanwhile, hydrogen sulfide (H2S) in saliva, produced by periodontal pathogens, is a significant biomarker for monitoring periodontitis. However, the simple and portable operation required to achieve high sensitivity remains a technical challenge for directly sensing exhaled breath. In this study, by integrating the fluorescent indicator (sodium 1-pyrenebutyrate, PB) into a covalent organic framework (COF, EB-TFP), an indicator displacement assay (IDA)-based fluorescence enhanced gas sensor (EB-TFP@PB) was constructed. With the selective binding of H2S to EB-TFP, the sensor substantiated excellent sensitivity, with a limit of detection (LOD) of 1.44 ppb for H2S gas. In addition, EB-TFP@PB showed selective antibacterial activity against Staphylococcus aureus (S. aureus) under non-illuminated conditions. The antibacterial mechanism of EB-TFP@PB was further investigated using electron microscopy-related techniques. This work not only offers a reliable and sensitive design for noninvasive medical diagnosis of H2S detection based on the IDA strategy but also provides a new idea for developing highly selective antibacterial COF composite materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
期刊最新文献
Back cover Back cover Functional covalent organic framework H2S sensors for periodontitis monitoring and antibacterial treatment† Label-free detection of dam methyltransferase activity and inhibition via malachite green aptamer generated by T7 RNA polymerase† Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1