Multimaterial Bonding of Additively Manufactured Carbon Fiber-Reinforced Thermoplastics/64 Titanium

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Engineering Materials Pub Date : 2025-02-05 DOI:10.1002/adem.202402221
Keiichi Shirasu, Takeru Mizuno, Hironori Tohmyoh
{"title":"Multimaterial Bonding of Additively Manufactured Carbon Fiber-Reinforced Thermoplastics/64 Titanium","authors":"Keiichi Shirasu,&nbsp;Takeru Mizuno,&nbsp;Hironori Tohmyoh","doi":"10.1002/adem.202402221","DOIUrl":null,"url":null,"abstract":"<p>\nThe integration of lightweight materials in hybrid structures is critical for achieving energy efficiency in automotive and aerospace industries. This study presents a novel method for directly bonding carbon-fiber-reinforced thermoplastics to Ti6Al4V titanium alloy (64Ti) substrates using fused filament fabrication 3D printing. The technique involves 3D printing short carbon fiber-reinforced polyamide 6 onto sandblasted 64Ti substrates, heated via a hot plate integrated into the 3D printer. Lap-shear tests reveal that adhesion strength improves with increased fusion time, achieving a maximum shear stress of 27.3 ± 2.2 MPa for 60 min welding. Finite element analysis demonstrates stress concentrations at the adhesion edges and highlights the formation of a fracture process zone with localized plastic deformation and microcrack generation. Additionally, the feasibility of fabricating 3D structures and integrating continuous carbon fiber-reinforced thermoplastics onto 64Ti substrates is demonstrated. This study advances hybrid material joining techniques by providing a cost-effective, scalable method for achieving robust metal-composite bonds suitable for structural applications.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"27 5","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adem.202402221","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adem.202402221","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of lightweight materials in hybrid structures is critical for achieving energy efficiency in automotive and aerospace industries. This study presents a novel method for directly bonding carbon-fiber-reinforced thermoplastics to Ti6Al4V titanium alloy (64Ti) substrates using fused filament fabrication 3D printing. The technique involves 3D printing short carbon fiber-reinforced polyamide 6 onto sandblasted 64Ti substrates, heated via a hot plate integrated into the 3D printer. Lap-shear tests reveal that adhesion strength improves with increased fusion time, achieving a maximum shear stress of 27.3 ± 2.2 MPa for 60 min welding. Finite element analysis demonstrates stress concentrations at the adhesion edges and highlights the formation of a fracture process zone with localized plastic deformation and microcrack generation. Additionally, the feasibility of fabricating 3D structures and integrating continuous carbon fiber-reinforced thermoplastics onto 64Ti substrates is demonstrated. This study advances hybrid material joining techniques by providing a cost-effective, scalable method for achieving robust metal-composite bonds suitable for structural applications.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增材制造碳纤维增强热塑性塑料/64钛的多材料粘合
在混合结构中集成轻质材料对于实现汽车和航空航天工业的能源效率至关重要。本研究提出了一种利用熔融长丝制造三维打印技术将碳纤维增强热塑性塑料直接粘合到 Ti6Al4V 钛合金(64Ti)基材上的新方法。该技术包括在喷砂 64Ti 基材上三维打印短碳纤维增强聚酰胺 6,并通过集成在三维打印机中的热板进行加热。搭接剪切测试表明,随着熔接时间的延长,粘附强度也会提高,60 分钟焊接的最大剪切应力为 27.3 ± 2.2 兆帕。有限元分析表明了粘合边缘的应力集中,并强调了局部塑性变形和微裂纹产生的断裂过程区的形成。此外,还证明了在 64Ti 基材上制造三维结构和集成连续碳纤维增强热塑性塑料的可行性。这项研究为实现适用于结构应用的坚固金属复合材料结合提供了一种具有成本效益、可扩展的方法,从而推动了混合材料连接技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
期刊最新文献
Issue Information Residual Stress States in Microstructurally Graded PBF–LB/M Austenitic Steel Components Structural Materials at MSE2024 Issue Information Special Section “Current Research Trends and Tendencies in Tribology”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1