Jovana S. Vuković, Martina Žabčić, Lea Gazvoda, Marija Vukomanović, Tatjana R. Ilić-Tomić, Dušan R. Milivojević, Simonida Lj. Tomić
{"title":"Development of κ-Carrageenan/Gelatin pH-Responsive Hydrogels for Potential Skin Regeneration Application","authors":"Jovana S. Vuković, Martina Žabčić, Lea Gazvoda, Marija Vukomanović, Tatjana R. Ilić-Tomić, Dušan R. Milivojević, Simonida Lj. Tomić","doi":"10.1002/bip.70008","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Advanced skin care involves innovative, multifunctional, and bio-inspired biomaterials capable of regenerating skin tissue. Here, we report the facile route for the fabrication of the bio-sourced pH-responsive hydrogels based on κ-carrageenan and gelatin, with properties desirable for the treatment of versatile skin disorders. The extensive characterization revealed differences in physicochemical properties due to chemical modifications of the hydrogels. Porosity ranged from 21.67% to 95.81%. By modifying κ-carrageenan hydrogels with gelatin, the Young's modulus values increased proportionally with the gelatin content, ranging from 0.23 to 2.90 MPa, while native κ-carrageenan hydrogels had the lowest values (0.12–0.42 MPa) and native gelatin hydrogels had the highest (10.85–18.03 MPa). Native κ-carrageenan hydrogels exhibited the most pronounced swelling (18.6–27.0), followed by gelatin-modified κ-carrageenan hydrogels (6.5–23.0) and native gelatin hydrogels (7.8–9.0). The native κ-carrageenan hydrogels also displayed the highest water vapor transmission rate (WVTR) (259.99 ± 16–279.91 ± 19 g m<sup>−2</sup> day<sup>−1</sup>), while the presence of gelatin lowered it. The hydrogels were preliminary exposed to human fibroblasts (MRC-5 cell line) and then to <i>Caenorhabditis elegans</i> to reveal the effects on whole living organisms. The summarized results suggest that the hydrogels represent advantageous and versatile biocompatible biomaterials set for further investigation as delivery platforms for bioactive molecules suitable for skin tissue regeneration.</p>\n </div>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"116 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bip.70008","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Advanced skin care involves innovative, multifunctional, and bio-inspired biomaterials capable of regenerating skin tissue. Here, we report the facile route for the fabrication of the bio-sourced pH-responsive hydrogels based on κ-carrageenan and gelatin, with properties desirable for the treatment of versatile skin disorders. The extensive characterization revealed differences in physicochemical properties due to chemical modifications of the hydrogels. Porosity ranged from 21.67% to 95.81%. By modifying κ-carrageenan hydrogels with gelatin, the Young's modulus values increased proportionally with the gelatin content, ranging from 0.23 to 2.90 MPa, while native κ-carrageenan hydrogels had the lowest values (0.12–0.42 MPa) and native gelatin hydrogels had the highest (10.85–18.03 MPa). Native κ-carrageenan hydrogels exhibited the most pronounced swelling (18.6–27.0), followed by gelatin-modified κ-carrageenan hydrogels (6.5–23.0) and native gelatin hydrogels (7.8–9.0). The native κ-carrageenan hydrogels also displayed the highest water vapor transmission rate (WVTR) (259.99 ± 16–279.91 ± 19 g m−2 day−1), while the presence of gelatin lowered it. The hydrogels were preliminary exposed to human fibroblasts (MRC-5 cell line) and then to Caenorhabditis elegans to reveal the effects on whole living organisms. The summarized results suggest that the hydrogels represent advantageous and versatile biocompatible biomaterials set for further investigation as delivery platforms for bioactive molecules suitable for skin tissue regeneration.
期刊介绍:
Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.