GOLM1 Promotes Atherogenesis by Activating Macrophage EGFR-ERK Signaling Cascade.

IF 16.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Circulation research Pub Date : 2025-03-03 DOI:10.1161/CIRCRESAHA.124.325880
Xiaochen Gai, Fangming Liu, Yixin Chen, Baohui Zhang, Yinliang Zhang, Yuting Wu, Shuhui Yang, Linlin Chen, Weiwei Deng, Yuan Wang, Shuiyun Wang, Cuntao Yu, Jie Du, Zhengyi Zhang, Jing Wang, Hongbing Zhang
{"title":"GOLM1 Promotes Atherogenesis by Activating Macrophage EGFR-ERK Signaling Cascade.","authors":"Xiaochen Gai, Fangming Liu, Yixin Chen, Baohui Zhang, Yinliang Zhang, Yuting Wu, Shuhui Yang, Linlin Chen, Weiwei Deng, Yuan Wang, Shuiyun Wang, Cuntao Yu, Jie Du, Zhengyi Zhang, Jing Wang, Hongbing Zhang","doi":"10.1161/CIRCRESAHA.124.325880","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Atherosclerosis is a chronic inflammatory disease. GOLM1 (Golgi membrane protein 1) is an inflammation-responsive protein and a mediator in some inflammation-associated pathological processes. Because we found a positive correlation between GOLM1 expression and atherosclerosis progression by checking the gene expression data set of human atherosclerotic lesions, we explored the potential significance of GOLM1 in atherosclerosis in this study.</p><p><strong>Methods: </strong>GOLM1 levels in serums and lesions of patients with atherosclerosis and mice with atherosclerosis were examined by immunostaining and ELISA. Gain-of-function and loss-of-function approaches were used to study the impacts of GOLM1 in inflammation and atherogenesis of <i>Apoe</i><sup>-/-</sup> mice on a Western diet. The effects of GOLM1 on macrophage behaviors were determined by OxLDL (oxidized low-density lipoprotein) uptake assay, single-cell sequencing analysis, global phosphoproteomics analysis, and molecular biological techniques. The therapeutic potential of GOLM1 neutralization for atherosclerosis was evaluated in <i>Apoe</i><sup>-/-</sup> mice.</p><p><strong>Results: </strong>GOLM1 was elevated in serums and lesions of patients with atherosclerosis and mice with atherosclerosis. Global deletion of GOLM1 ameliorated mouse inflammation and atherosclerosis, while knock-in of GOLM1 exacerbated these pathological manifestations. Furthermore, hepatic GOLM1 deletion reduced circulating GOLM1 and attenuated atherogenesis. Mechanistically, the expression and secretion of GOLM1 were induced in multiple mouse tissues by atherogenic stimulus, leading to the elevation of extracellular GOLM1. Extracellular GOLM1 then stimulated ERK (extracellular signal-regulated kinase) signaling cascade by binding to its putative receptor EGFR (epidermal growth factor receptor) to promote macrophage uptake of LDL (low-density lipoprotein) and enhance the corresponding macrophage immune response. Moreover, neutralizing GOLM1 by an antibody suppressed mouse inflammation and atherogenesis.</p><p><strong>Conclusions: </strong>GOLM1 is an atherogenic mediator and a promising therapeutic target for the intervention of atherosclerotic diseases.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":""},"PeriodicalIF":16.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCRESAHA.124.325880","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Atherosclerosis is a chronic inflammatory disease. GOLM1 (Golgi membrane protein 1) is an inflammation-responsive protein and a mediator in some inflammation-associated pathological processes. Because we found a positive correlation between GOLM1 expression and atherosclerosis progression by checking the gene expression data set of human atherosclerotic lesions, we explored the potential significance of GOLM1 in atherosclerosis in this study.

Methods: GOLM1 levels in serums and lesions of patients with atherosclerosis and mice with atherosclerosis were examined by immunostaining and ELISA. Gain-of-function and loss-of-function approaches were used to study the impacts of GOLM1 in inflammation and atherogenesis of Apoe-/- mice on a Western diet. The effects of GOLM1 on macrophage behaviors were determined by OxLDL (oxidized low-density lipoprotein) uptake assay, single-cell sequencing analysis, global phosphoproteomics analysis, and molecular biological techniques. The therapeutic potential of GOLM1 neutralization for atherosclerosis was evaluated in Apoe-/- mice.

Results: GOLM1 was elevated in serums and lesions of patients with atherosclerosis and mice with atherosclerosis. Global deletion of GOLM1 ameliorated mouse inflammation and atherosclerosis, while knock-in of GOLM1 exacerbated these pathological manifestations. Furthermore, hepatic GOLM1 deletion reduced circulating GOLM1 and attenuated atherogenesis. Mechanistically, the expression and secretion of GOLM1 were induced in multiple mouse tissues by atherogenic stimulus, leading to the elevation of extracellular GOLM1. Extracellular GOLM1 then stimulated ERK (extracellular signal-regulated kinase) signaling cascade by binding to its putative receptor EGFR (epidermal growth factor receptor) to promote macrophage uptake of LDL (low-density lipoprotein) and enhance the corresponding macrophage immune response. Moreover, neutralizing GOLM1 by an antibody suppressed mouse inflammation and atherogenesis.

Conclusions: GOLM1 is an atherogenic mediator and a promising therapeutic target for the intervention of atherosclerotic diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Circulation research
Circulation research 医学-外周血管病
CiteScore
29.60
自引率
2.00%
发文量
535
审稿时长
3-6 weeks
期刊介绍: Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies. Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities. In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field. Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.
期刊最新文献
LncRNA MIR181A1HG Deficiency Attenuates Vascular Inflammation and Atherosclerosis. NR4A1 Acts as a Novel Regulator of Platelet Activation and Thrombus Formation. GOLM1 Promotes Atherogenesis by Activating Macrophage EGFR-ERK Signaling Cascade. Intestinal Microbiota Contributes to the Development of Cardiovascular Inflammation and Vasculitis in Mice. Preservation of Vascular Endothelial Function in Late-Onset Postmenopausal Women.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1