Siarhei A Dabravolski, Alexey V Churov, Dmitry F Beloyartsev, Tatiana I Kovyanova, Irina N Lyapina, Vasily N Sukhorukov, Alexander N Orekhov
{"title":"The role of NRF2 function and regulation in atherosclerosis: an update.","authors":"Siarhei A Dabravolski, Alexey V Churov, Dmitry F Beloyartsev, Tatiana I Kovyanova, Irina N Lyapina, Vasily N Sukhorukov, Alexander N Orekhov","doi":"10.1007/s11010-025-05233-y","DOIUrl":null,"url":null,"abstract":"<p><p>Atherosclerosis, a chronic inflammatory disease of the arteries, remains a leading cause of cardiovascular morbidity and mortality worldwide. This review examines the molecular mechanisms underlying NRF2 role in atherosclerosis, focusing on the recently defined intricate interplay between autophagy, the nuclear factor erythroid 2-related factor 2 (NRF2) pathway, microRNAs (miRNAs), and genes regulating NRF2 with atheroprotective effects. The NRF2/autophagy axis emerges as a critical regulator of cellular responses to oxidative stress and inflammation in atherosclerosis, with key players including Heat Shock Protein 90 (HSP90), Neuropeptide Y (NPY), and Glutaredoxin 2 (GLRX2). MiRNAs are identified as potent regulators of gene expression in atherosclerosis, impacting NRF2 signalling and disease susceptibility. Additionally, genes such as Prenyl diphosphate synthase subunit 2 (PDSS2), Sulfiredoxin1 (Srxn1), and Isocitrate dehydrogenase 1 (IDH1) are implicated in NRF2-dependent atheroprotective pathways. Future research directions include elucidating the complex interactions between these molecular pathways, evaluating novel therapeutic targets in preclinical and clinical settings, and addressing challenges related to drug delivery and patient heterogeneity. Despite limitations, this review underscores the potential for targeted interventions aimed at modulating NRF2/autophagy signalling and miRNA regulatory networks to mitigate atherosclerosis progression and improve cardiovascular outcomes.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-025-05233-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Atherosclerosis, a chronic inflammatory disease of the arteries, remains a leading cause of cardiovascular morbidity and mortality worldwide. This review examines the molecular mechanisms underlying NRF2 role in atherosclerosis, focusing on the recently defined intricate interplay between autophagy, the nuclear factor erythroid 2-related factor 2 (NRF2) pathway, microRNAs (miRNAs), and genes regulating NRF2 with atheroprotective effects. The NRF2/autophagy axis emerges as a critical regulator of cellular responses to oxidative stress and inflammation in atherosclerosis, with key players including Heat Shock Protein 90 (HSP90), Neuropeptide Y (NPY), and Glutaredoxin 2 (GLRX2). MiRNAs are identified as potent regulators of gene expression in atherosclerosis, impacting NRF2 signalling and disease susceptibility. Additionally, genes such as Prenyl diphosphate synthase subunit 2 (PDSS2), Sulfiredoxin1 (Srxn1), and Isocitrate dehydrogenase 1 (IDH1) are implicated in NRF2-dependent atheroprotective pathways. Future research directions include elucidating the complex interactions between these molecular pathways, evaluating novel therapeutic targets in preclinical and clinical settings, and addressing challenges related to drug delivery and patient heterogeneity. Despite limitations, this review underscores the potential for targeted interventions aimed at modulating NRF2/autophagy signalling and miRNA regulatory networks to mitigate atherosclerosis progression and improve cardiovascular outcomes.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.