Mohammad Zoofaghari, Martin Damrath, Mladen Veletić, Ilangko Balasingham
{"title":"Empirical Model of Focused Ultrasound-Mediated Treatment for Chemotherapy Delivery to Brain Tumors.","authors":"Mohammad Zoofaghari, Martin Damrath, Mladen Veletić, Ilangko Balasingham","doi":"10.1016/j.ultrasmedbio.2025.01.018","DOIUrl":null,"url":null,"abstract":"<p><p>Focused ultrasound (FUS) has emerged as a transformative technique for enhancing drug delivery to brain tumors by temporarily and locally disrupting the blood-brain barrier (BBB). Despite significant progress in both pre-clinical and clinical research, a major challenge remains: the absence of a model that connects the properties of drug particles and FUS sonication parameters to therapeutic effectiveness. In this study, we introduce a novel empirical model that integrates key factors, including drug pharmacodynamics, microbubble kinetics for BBB disruption, intrabrain ultrasound signal propagation, and skull-thickness variations. The model defines a new sonication parameter that encapsulates ultrasound signal characteristics and predicts the concentration of therapeutic agents internalized or bound to DNA with an accuracy exceeding 82%. By employing data from previous pre-clinical studies, this model facilitates the development of precise sonication protocols tailored for clinical applications. These advancements represent a significant step toward personalized FUS-mediated treatments, bridging the gap between experimental research and patient-centered therapies.</p>","PeriodicalId":49399,"journal":{"name":"Ultrasound in Medicine and Biology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasound in Medicine and Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ultrasmedbio.2025.01.018","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Focused ultrasound (FUS) has emerged as a transformative technique for enhancing drug delivery to brain tumors by temporarily and locally disrupting the blood-brain barrier (BBB). Despite significant progress in both pre-clinical and clinical research, a major challenge remains: the absence of a model that connects the properties of drug particles and FUS sonication parameters to therapeutic effectiveness. In this study, we introduce a novel empirical model that integrates key factors, including drug pharmacodynamics, microbubble kinetics for BBB disruption, intrabrain ultrasound signal propagation, and skull-thickness variations. The model defines a new sonication parameter that encapsulates ultrasound signal characteristics and predicts the concentration of therapeutic agents internalized or bound to DNA with an accuracy exceeding 82%. By employing data from previous pre-clinical studies, this model facilitates the development of precise sonication protocols tailored for clinical applications. These advancements represent a significant step toward personalized FUS-mediated treatments, bridging the gap between experimental research and patient-centered therapies.
期刊介绍:
Ultrasound in Medicine and Biology is the official journal of the World Federation for Ultrasound in Medicine and Biology. The journal publishes original contributions that demonstrate a novel application of an existing ultrasound technology in clinical diagnostic, interventional and therapeutic applications, new and improved clinical techniques, the physics, engineering and technology of ultrasound in medicine and biology, and the interactions between ultrasound and biological systems, including bioeffects. Papers that simply utilize standard diagnostic ultrasound as a measuring tool will be considered out of scope. Extended critical reviews of subjects of contemporary interest in the field are also published, in addition to occasional editorial articles, clinical and technical notes, book reviews, letters to the editor and a calendar of forthcoming meetings. It is the aim of the journal fully to meet the information and publication requirements of the clinicians, scientists, engineers and other professionals who constitute the biomedical ultrasonic community.