Transferrin-modified Gemcitabine Encapsulated Polymeric Nanoparticles Persuaded Apoptosis in U87MG Cells and Improved Drug Availability in Rat Brain: An Active Targeting Strategy for Treatment of Glioma.

IF 1.6 4区 农林科学 Q3 CHEMISTRY, APPLIED Journal of oleo science Pub Date : 2025-01-01 DOI:10.5650/jos.ess24085
Ladi Alik Kumar, Gurudutta Pattnaik, Bhabani Sankar Satapathy, Dibya Lochan Mohanty, Ameeduzzafar Zafar, Musarrat Husain Warsi, Mohammad Khalid, Md Ali Mujtaba
{"title":"Transferrin-modified Gemcitabine Encapsulated Polymeric Nanoparticles Persuaded Apoptosis in U87MG Cells and Improved Drug Availability in Rat Brain: An Active Targeting Strategy for Treatment of Glioma.","authors":"Ladi Alik Kumar, Gurudutta Pattnaik, Bhabani Sankar Satapathy, Dibya Lochan Mohanty, Ameeduzzafar Zafar, Musarrat Husain Warsi, Mohammad Khalid, Md Ali Mujtaba","doi":"10.5650/jos.ess24085","DOIUrl":null,"url":null,"abstract":"<p><p>Among primary brain tumors, glioma has one of the highest fatality rates. Routine chemotherapy often faces off-target drug loss and sub-optimal drug availability at brain tissue. The present study aims at the development of transferrin-conjugated gemcitabine loaded poly (lactic co glycolic acid) nanoparticles (Tf-GB-PLGA-NPs) targeted strategy for brain cancer cell. GB-PLGA-NPs were prepared using solvent evaporation and nanoprecipitation method and then conjugated with Tf. The formulation was characterized for physicochemical parameters, in-vitro release, cytotoxicity, apoptosis (U87MG cell line), and in-vivo pharmacokinetic study. Tf-GB-PLGA-NPs showed 143±6.23 nm of particle size, 0.213 of PDI, -25 mV of zeta potential, and 77.53±1.43% of entrapment efficiency, respectively. Tf-GB-PLGA-NPs exhibited spherical morphology and sustained release of GB (76.54±4.08%) over 24 h. Tf-GB-PLGA-NPs exhibited significant (p < 0.05) cell inhibition against cell line (U87MG) than GB-PLGA-NPs and pure GB. The Tf-GB-PLGA-NPs exhibited higher U87MG apoptosis (61.25%) than GB-PLGA-NPs (31.61%). The Tf-GB-PLGA-NPs exhibited a significantly higher concentration in the brain than pure GB and GB-PLGA-NPs. Tf-GB-PLGA-NPs showed 11.16-fold higher AUC0-t (bioavailability) than pure GB solution and 2.23-fold higher bioavailability than GB-PLGA-NPs. The finding concludes that the Tf-GB-PLGA-NPs are an alternative potent carrier for GB to brain delivery for treating brain cancer.</p>","PeriodicalId":16626,"journal":{"name":"Journal of oleo science","volume":"74 3","pages":"261-274"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of oleo science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5650/jos.ess24085","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Among primary brain tumors, glioma has one of the highest fatality rates. Routine chemotherapy often faces off-target drug loss and sub-optimal drug availability at brain tissue. The present study aims at the development of transferrin-conjugated gemcitabine loaded poly (lactic co glycolic acid) nanoparticles (Tf-GB-PLGA-NPs) targeted strategy for brain cancer cell. GB-PLGA-NPs were prepared using solvent evaporation and nanoprecipitation method and then conjugated with Tf. The formulation was characterized for physicochemical parameters, in-vitro release, cytotoxicity, apoptosis (U87MG cell line), and in-vivo pharmacokinetic study. Tf-GB-PLGA-NPs showed 143±6.23 nm of particle size, 0.213 of PDI, -25 mV of zeta potential, and 77.53±1.43% of entrapment efficiency, respectively. Tf-GB-PLGA-NPs exhibited spherical morphology and sustained release of GB (76.54±4.08%) over 24 h. Tf-GB-PLGA-NPs exhibited significant (p < 0.05) cell inhibition against cell line (U87MG) than GB-PLGA-NPs and pure GB. The Tf-GB-PLGA-NPs exhibited higher U87MG apoptosis (61.25%) than GB-PLGA-NPs (31.61%). The Tf-GB-PLGA-NPs exhibited a significantly higher concentration in the brain than pure GB and GB-PLGA-NPs. Tf-GB-PLGA-NPs showed 11.16-fold higher AUC0-t (bioavailability) than pure GB solution and 2.23-fold higher bioavailability than GB-PLGA-NPs. The finding concludes that the Tf-GB-PLGA-NPs are an alternative potent carrier for GB to brain delivery for treating brain cancer.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
转铁蛋白修饰的吉西他滨包裹聚合物纳米粒子可诱导 U87MG 细胞凋亡并提高药物在大鼠脑中的利用率:一种治疗胶质瘤的主动靶向策略
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of oleo science
Journal of oleo science CHEMISTRY, APPLIED-FOOD SCIENCE & TECHNOLOGY
CiteScore
3.20
自引率
6.70%
发文量
173
审稿时长
3 months
期刊介绍: The J. Oleo Sci. publishes original researches of high quality on chemistry, biochemistry and science of fats and oils such as related food products, detergents, natural products, petroleum products, lipids and related proteins and sugars. The Journal also encourages papers on chemistry and/or biochemistry as a major component combined with biological/ sensory/nutritional/toxicological evaluation related to agriculture and/or food.
期刊最新文献
CONTENTS Volume 74, Issue 1, January 2025. Effect of Cholic Acid Salt and Its Mixed Micelles on the Morphology of Giant Unilamellar Vesicles (GUV). A Straightforward Synthesis of Pinocembrin. Antibiofilm and Antiquorum Sensing Potential of Pheretima posthum. Effects of Commonly Used Vegetable Oils on Skin Barrier Function and Staphylococcus aureus Biofilm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1