Exposure to bisphenol A and sodium nitrate found in processed meat induces endocrine disruption and dyslipidemia through PI3K/AKT/SREBP pathway in zebrafish larvae.
S P Ramya Ranjan Nayak, Anamika Das, Karthikeyan Ramamurthy, Mukesh Pasupuleti, Rajakrishnan Rajagopal, Jesu Arockiaraj
{"title":"Exposure to bisphenol A and sodium nitrate found in processed meat induces endocrine disruption and dyslipidemia through PI3K/AKT/SREBP pathway in zebrafish larvae.","authors":"S P Ramya Ranjan Nayak, Anamika Das, Karthikeyan Ramamurthy, Mukesh Pasupuleti, Rajakrishnan Rajagopal, Jesu Arockiaraj","doi":"10.1016/j.jnutbio.2025.109887","DOIUrl":null,"url":null,"abstract":"<p><p>Meat is a staple in many cultural diets, and the consumption of processed meats has increased significantly worldwide. The widespread use of sodium nitrate (NaNO<sub>3</sub>) as a preservative and the unintentional leaching of bisphenol A (BPA) from packaging into meats have raised health concerns. This study evaluates the combined toxicity of BPA and NaNO<sub>3</sub> despite their individual safety assessments. Our findings reveal that co-exposure to BPA and NaNO<sub>3</sub> at levels found in processed meats induces mortality and malformations in zebrafish larvae. The combined exposure triggers oxidative stress, lipid peroxidation, dyslipidemia, inflammation, and apoptosis. Network toxicology analysis elucidates the molecular mechanisms underlying metabolic dysfunction caused by these substances. Dysregulation of genes related to thyroid function (tsh-β, dio-1, thr-b) and inflammation (tnf-α, il-1β, il-6, nfκb) was observed in the co-exposure group. Additionally, this group exhibited increased lipid accumulation, elevated cholesterol and triglyceride levels, and dysregulation of essential lipid metabolism genes (srebp2, pcsk9). Co-exposure also impaired larval motility and behavior, evidenced by hypolocomotion and reduced acetylcholinesterase levels. Further gene expression analysis showed increased levels of pi3k and akt, two major signaling molecules. Ultimately, the simultaneous exposure to BPA and NaNO<sub>3</sub> leads to disruptions in the endocrine system and abnormal lipid levels via activating the PI3K/AKT/SREBP pathway.</p>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":" ","pages":"109887"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jnutbio.2025.109887","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Meat is a staple in many cultural diets, and the consumption of processed meats has increased significantly worldwide. The widespread use of sodium nitrate (NaNO3) as a preservative and the unintentional leaching of bisphenol A (BPA) from packaging into meats have raised health concerns. This study evaluates the combined toxicity of BPA and NaNO3 despite their individual safety assessments. Our findings reveal that co-exposure to BPA and NaNO3 at levels found in processed meats induces mortality and malformations in zebrafish larvae. The combined exposure triggers oxidative stress, lipid peroxidation, dyslipidemia, inflammation, and apoptosis. Network toxicology analysis elucidates the molecular mechanisms underlying metabolic dysfunction caused by these substances. Dysregulation of genes related to thyroid function (tsh-β, dio-1, thr-b) and inflammation (tnf-α, il-1β, il-6, nfκb) was observed in the co-exposure group. Additionally, this group exhibited increased lipid accumulation, elevated cholesterol and triglyceride levels, and dysregulation of essential lipid metabolism genes (srebp2, pcsk9). Co-exposure also impaired larval motility and behavior, evidenced by hypolocomotion and reduced acetylcholinesterase levels. Further gene expression analysis showed increased levels of pi3k and akt, two major signaling molecules. Ultimately, the simultaneous exposure to BPA and NaNO3 leads to disruptions in the endocrine system and abnormal lipid levels via activating the PI3K/AKT/SREBP pathway.
期刊介绍:
Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology.
Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.