Sara Sepehri, Dinja De Win, Anja Heymans, Freddy Van Goethem, Robim M Rodrigues, Vera Rogiers, Tamara Vanhaecke
{"title":"Next Generation Risk Assessment of Hair Dye HC Yellow No. 13: Ensuring Protection From Liver Steatogenic Effects.","authors":"Sara Sepehri, Dinja De Win, Anja Heymans, Freddy Van Goethem, Robim M Rodrigues, Vera Rogiers, Tamara Vanhaecke","doi":"10.1016/j.yrtph.2025.105794","DOIUrl":null,"url":null,"abstract":"<p><p>This study employs animal-free Next Generation Risk Assessment (NGRA) principles to evaluate the safety of repeated dermal exposure to 2.5% (w/w) HC Yellow No. 13 (HCY13) hair dye. As multiple in silico tools consistently flagged hepatotoxic potential, likely due to HCY13's trifluoromethyl group, which is known to interfere with hepatic lipid metabolism, liver steatosis was chosen as the primary mode of action for evaluation. AOP-guided in vitro tests were conducted, exposing human stem cell-derived hepatic cells to varying HCY13 concentrations over 72 hours. The expression of 11 lipid metabolism-related marker genes (AHR, PPARA, LXRA, APOB, ACOX1, CPT1A, FASN, SCD1, DGAT2, CD36, and PPARG) and triglyceride accumulation, a phenotypic hallmark of steatosis, were measured. PROAST software was used to calculate in vitro Points of Departure (PoD<sub>NAM</sub>) for each biomarker. Using GastroPlus 9.9, physiologically-based pharmacokinetic (PBPK) models estimated internal liver concentrations (C<sub>max liver</sub>) of HCY13, ranging from 4 to 20 pM. All PoD<sub>NAM</sub> values significantly exceeded the predicted C<sub>max liver</sub>, indicating that HCY13 at 2.5% (w/w) is unlikely to induce liver steatosis under the assumed conditions. This research demonstrates the utility of NGRA, integrating AOP-based in vitro assays and computational models to protect human health and support regulatory decision-making without animal testing.</p>","PeriodicalId":20852,"journal":{"name":"Regulatory Toxicology and Pharmacology","volume":" ","pages":"105794"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regulatory Toxicology and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.yrtph.2025.105794","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study employs animal-free Next Generation Risk Assessment (NGRA) principles to evaluate the safety of repeated dermal exposure to 2.5% (w/w) HC Yellow No. 13 (HCY13) hair dye. As multiple in silico tools consistently flagged hepatotoxic potential, likely due to HCY13's trifluoromethyl group, which is known to interfere with hepatic lipid metabolism, liver steatosis was chosen as the primary mode of action for evaluation. AOP-guided in vitro tests were conducted, exposing human stem cell-derived hepatic cells to varying HCY13 concentrations over 72 hours. The expression of 11 lipid metabolism-related marker genes (AHR, PPARA, LXRA, APOB, ACOX1, CPT1A, FASN, SCD1, DGAT2, CD36, and PPARG) and triglyceride accumulation, a phenotypic hallmark of steatosis, were measured. PROAST software was used to calculate in vitro Points of Departure (PoDNAM) for each biomarker. Using GastroPlus 9.9, physiologically-based pharmacokinetic (PBPK) models estimated internal liver concentrations (Cmax liver) of HCY13, ranging from 4 to 20 pM. All PoDNAM values significantly exceeded the predicted Cmax liver, indicating that HCY13 at 2.5% (w/w) is unlikely to induce liver steatosis under the assumed conditions. This research demonstrates the utility of NGRA, integrating AOP-based in vitro assays and computational models to protect human health and support regulatory decision-making without animal testing.
期刊介绍:
Regulatory Toxicology and Pharmacology publishes peer reviewed articles that involve the generation, evaluation, and interpretation of experimental animal and human data that are of direct importance and relevance for regulatory authorities with respect to toxicological and pharmacological regulations in society. All peer-reviewed articles that are published should be devoted to improve the protection of human health and environment. Reviews and discussions are welcomed that address legal and/or regulatory decisions with respect to risk assessment and management of toxicological and pharmacological compounds on a scientific basis. It addresses an international readership of scientists, risk assessors and managers, and other professionals active in the field of human and environmental health.
Types of peer-reviewed articles published:
-Original research articles of relevance for regulatory aspects covering aspects including, but not limited to:
1.Factors influencing human sensitivity
2.Exposure science related to risk assessment
3.Alternative toxicological test methods
4.Frameworks for evaluation and integration of data in regulatory evaluations
5.Harmonization across regulatory agencies
6.Read-across methods and evaluations
-Contemporary Reviews on policy related Research issues
-Letters to the Editor
-Guest Editorials (by Invitation)