Decoding the mechanism of proanthocyanidins in central analgesia: redox regulation and KCNK3 blockade.

IF 9.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Experimental and Molecular Medicine Pub Date : 2025-03-03 DOI:10.1038/s12276-025-01412-5
Junxiang Gu, Jian Wang, Hongwei Fan, Yi Wei, Yan Li, Chengwen Ma, Keke Xing, Pan Wang, Zhenyu Wu, Teng Wu, Xiaoyi Li, Luoying Zhang, Yunyun Han, Tao Chen, Jianqiang Qu, Xianxia Yan
{"title":"Decoding the mechanism of proanthocyanidins in central analgesia: redox regulation and KCNK3 blockade.","authors":"Junxiang Gu, Jian Wang, Hongwei Fan, Yi Wei, Yan Li, Chengwen Ma, Keke Xing, Pan Wang, Zhenyu Wu, Teng Wu, Xiaoyi Li, Luoying Zhang, Yunyun Han, Tao Chen, Jianqiang Qu, Xianxia Yan","doi":"10.1038/s12276-025-01412-5","DOIUrl":null,"url":null,"abstract":"<p><p>Neuropathic pain causes enduring physical discomfort and emotional distress. Conventional pharmacological treatments often provide restricted relief and may result in undesirable side effects, posing a substantial clinical challenge. Peripheral and spinal redox homeostasis plays an important role in pain processing and perception. However, the roles of oxidative stress and antioxidants in pain and analgesia on the cortical region during chronic pain remains obscure. Here we focus on the ventrolateral orbital cortex (VLO), a brain region associated with pain severity and involved in pain inhibition. Using a spared nerve injury mouse model, we observed the notable reactive oxygen species (ROS)-mediated suppression of the excitability of pyramidal cells (PYR<sup>VLO</sup>) in the VLO. Nasal application or microinjection of the natural antioxidants proanthocyanidins (PACs) to the VLO specifically increased the activity of PYR<sup>VLO</sup> and induced a significant analgesic effect. Mechanistically, PACs activate PYR<sup>VLO</sup> by inhibiting distinct potassium channels in different ways: (1) by scavenging ROS to reduce ROS-sensitive voltage-gated potassium currents and (2) by acting as a channel blocker through direct binding to the cap structure of KCNK3 to inhibit the leak potassium current (I<sub>leak</sub>). These results reveal the role of cortical oxidative stress in central hyperalgesia and elucidate the mechanism and potential translational significance of PACs in central analgesia. These findings suggest that the effects of PACs extend beyond their commonly assumed antioxidant or anti-inflammatory effects.</p>","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":" ","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s12276-025-01412-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neuropathic pain causes enduring physical discomfort and emotional distress. Conventional pharmacological treatments often provide restricted relief and may result in undesirable side effects, posing a substantial clinical challenge. Peripheral and spinal redox homeostasis plays an important role in pain processing and perception. However, the roles of oxidative stress and antioxidants in pain and analgesia on the cortical region during chronic pain remains obscure. Here we focus on the ventrolateral orbital cortex (VLO), a brain region associated with pain severity and involved in pain inhibition. Using a spared nerve injury mouse model, we observed the notable reactive oxygen species (ROS)-mediated suppression of the excitability of pyramidal cells (PYRVLO) in the VLO. Nasal application or microinjection of the natural antioxidants proanthocyanidins (PACs) to the VLO specifically increased the activity of PYRVLO and induced a significant analgesic effect. Mechanistically, PACs activate PYRVLO by inhibiting distinct potassium channels in different ways: (1) by scavenging ROS to reduce ROS-sensitive voltage-gated potassium currents and (2) by acting as a channel blocker through direct binding to the cap structure of KCNK3 to inhibit the leak potassium current (Ileak). These results reveal the role of cortical oxidative stress in central hyperalgesia and elucidate the mechanism and potential translational significance of PACs in central analgesia. These findings suggest that the effects of PACs extend beyond their commonly assumed antioxidant or anti-inflammatory effects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解码原花青素在中枢镇痛中的作用机制:氧化还原调节和 KCNK3 阻断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental and Molecular Medicine
Experimental and Molecular Medicine 医学-生化与分子生物学
CiteScore
19.50
自引率
0.80%
发文量
166
审稿时长
3 months
期刊介绍: Experimental & Molecular Medicine (EMM) stands as Korea's pioneering biochemistry journal, established in 1964 and rejuvenated in 1996 as an Open Access, fully peer-reviewed international journal. Dedicated to advancing translational research and showcasing recent breakthroughs in the biomedical realm, EMM invites submissions encompassing genetic, molecular, and cellular studies of human physiology and diseases. Emphasizing the correlation between experimental and translational research and enhanced clinical benefits, the journal actively encourages contributions employing specific molecular tools. Welcoming studies that bridge basic discoveries with clinical relevance, alongside articles demonstrating clear in vivo significance and novelty, Experimental & Molecular Medicine proudly serves as an open-access, online-only repository of cutting-edge medical research.
期刊最新文献
Blockade of the vaspin-AP-1 axis inhibits arthritis development. Decoding the mechanism of proanthocyanidins in central analgesia: redox regulation and KCNK3 blockade. Engineered EVs from LncEEF1G - overexpressing MSCs promote fibrotic liver regeneration by upregulating HGF release from hepatic stellate cells. Metabolic reprogramming in hepatocellular carcinoma: mechanisms and therapeutic implications. Modulating neuroplasticity for chronic pain relief: noninvasive neuromodulation as a promising approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1