The radiogenomic and spatiogenomic landscapes of glioblastoma and their relationship to oncogenic drivers.

IF 5.4 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Communications medicine Pub Date : 2025-03-01 DOI:10.1038/s43856-025-00767-0
Anahita Fathi Kazerooni, Hamed Akbari, Xiaoju Hu, Vikas Bommineni, Dimitris Grigoriadis, Erik Toorens, Chiharu Sako, Elizabeth Mamourian, Dominique Ballinger, Robyn Sussman, Ashish Singh, Ioannis I Verginadis, Nadia Dahmane, Constantinos Koumenis, Zev A Binder, Stephen J Bagley, Suyash Mohan, Artemis Hatzigeorgiou, Donald M O'Rourke, Tapan Ganguly, Subhajyoti De, Spyridon Bakas, MacLean P Nasrallah, Christos Davatzikos
{"title":"The radiogenomic and spatiogenomic landscapes of glioblastoma and their relationship to oncogenic drivers.","authors":"Anahita Fathi Kazerooni, Hamed Akbari, Xiaoju Hu, Vikas Bommineni, Dimitris Grigoriadis, Erik Toorens, Chiharu Sako, Elizabeth Mamourian, Dominique Ballinger, Robyn Sussman, Ashish Singh, Ioannis I Verginadis, Nadia Dahmane, Constantinos Koumenis, Zev A Binder, Stephen J Bagley, Suyash Mohan, Artemis Hatzigeorgiou, Donald M O'Rourke, Tapan Ganguly, Subhajyoti De, Spyridon Bakas, MacLean P Nasrallah, Christos Davatzikos","doi":"10.1038/s43856-025-00767-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Glioblastoma is a highly heterogeneous brain tumor, posing challenges for precision therapies and patient stratification in clinical trials. Understanding how genetic mutations influence tumor imaging may improve patient management and treatment outcomes. This study investigates the relationship between imaging features, spatial patterns of tumor location, and genetic alterations in IDH-wildtype glioblastoma, as well as the likely sequence of mutational events.</p><p><strong>Methods: </strong>We conducted a retrospective analysis of 357 IDH-wildtype glioblastomas with pre-operative multiparametric MRI and targeted genetic sequencing data. Radiogenomic signatures and spatial distribution maps were generated for key mutations in genes such as EGFR, PTEN, TP53, and NF1 and their corresponding pathways. Machine and deep learning models were used to identify imaging biomarkers and stratify tumors based on their genetic profiles and molecular heterogeneity.</p><p><strong>Results: </strong>Here, we show that glioblastoma mutations produce distinctive imaging signatures, which are more pronounced in tumors with less molecular heterogeneity. These signatures provide insights into how mutations affect tumor characteristics such as neovascularization, cell density, invasion, and vascular leakage. We also found that tumor location and spatial distribution correlate with genetic profiles, revealing associations between tumor regions and specific oncogenic drivers. Additionally, imaging features reflect the cross-sectionally inferred evolutionary trajectories of glioblastomas.</p><p><strong>Conclusions: </strong>This study establishes clinically accessible imaging biomarkers that capture the molecular composition and oncogenic drivers of glioblastoma. These findings have potential implications for noninvasive tumor profiling, personalized therapies, and improved patient stratification in clinical trials.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"55"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873127/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-025-00767-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Glioblastoma is a highly heterogeneous brain tumor, posing challenges for precision therapies and patient stratification in clinical trials. Understanding how genetic mutations influence tumor imaging may improve patient management and treatment outcomes. This study investigates the relationship between imaging features, spatial patterns of tumor location, and genetic alterations in IDH-wildtype glioblastoma, as well as the likely sequence of mutational events.

Methods: We conducted a retrospective analysis of 357 IDH-wildtype glioblastomas with pre-operative multiparametric MRI and targeted genetic sequencing data. Radiogenomic signatures and spatial distribution maps were generated for key mutations in genes such as EGFR, PTEN, TP53, and NF1 and their corresponding pathways. Machine and deep learning models were used to identify imaging biomarkers and stratify tumors based on their genetic profiles and molecular heterogeneity.

Results: Here, we show that glioblastoma mutations produce distinctive imaging signatures, which are more pronounced in tumors with less molecular heterogeneity. These signatures provide insights into how mutations affect tumor characteristics such as neovascularization, cell density, invasion, and vascular leakage. We also found that tumor location and spatial distribution correlate with genetic profiles, revealing associations between tumor regions and specific oncogenic drivers. Additionally, imaging features reflect the cross-sectionally inferred evolutionary trajectories of glioblastomas.

Conclusions: This study establishes clinically accessible imaging biomarkers that capture the molecular composition and oncogenic drivers of glioblastoma. These findings have potential implications for noninvasive tumor profiling, personalized therapies, and improved patient stratification in clinical trials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
胶质母细胞瘤的放射基因组和空间基因组图谱及其与致癌驱动因素的关系。
背景:胶质母细胞瘤是一种高度异质性的脑肿瘤:胶质母细胞瘤是一种高度异质性的脑肿瘤,给临床试验中的精准治疗和患者分层带来了挑战。了解基因突变如何影响肿瘤成像可改善患者管理和治疗效果。本研究调查了IDH-野生型胶质母细胞瘤的成像特征、肿瘤位置的空间模式和基因改变之间的关系,以及突变事件的可能顺序:我们对357例IDH-野生型胶质母细胞瘤的术前多参数磁共振成像和靶向基因测序数据进行了回顾性分析。针对表皮生长因子受体(EGFR)、PTEN、TP53 和 NF1 等基因的关键突变及其相应通路生成了放射基因组特征和空间分布图。机器学习和深度学习模型用于识别成像生物标记物,并根据肿瘤的遗传特征和分子异质性对肿瘤进行分层:结果:我们在此表明,胶质母细胞瘤突变会产生独特的成像特征,在分子异质性较低的肿瘤中更为明显。这些特征让我们了解到突变如何影响肿瘤特征,如新生血管、细胞密度、侵袭和血管渗漏。我们还发现,肿瘤位置和空间分布与遗传特征相关,揭示了肿瘤区域与特定致癌驱动因素之间的关联。此外,成像特征反映了横断面推断的胶质母细胞瘤进化轨迹:这项研究建立了临床可及的成像生物标志物,可捕捉胶质母细胞瘤的分子组成和致癌因素。这些发现对非侵入性肿瘤特征描述、个性化疗法和改善临床试验中的患者分层具有潜在的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Molecular insights in HIV-associated cardiac dysfunction. Author Correction: A reproducible extended ex-vivo normothermic machine liver perfusion protocol utilising improved nutrition and targeted vascular flows. Sex-specific transcriptome similarity networks elucidate comorbidity relationships. Author Correction: Impact of commonly administered drugs on the progression of spinal cord injury: a systematic review. Maternal mid-pregnancy dietary patterns and inflammatory bowel disease in offspring from a prospective cohort study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1