A signal peptide variant in SLURP1 with dominant-negative effect causes progressive symmetric erythrokeratodermia.

Zhuoqing Gong, Yunran Peng, Sisi Zhao, Zhimiao Lin, Zhanli Tang, Huijun Wang
{"title":"A signal peptide variant in SLURP1 with dominant-negative effect causes progressive symmetric erythrokeratodermia.","authors":"Zhuoqing Gong, Yunran Peng, Sisi Zhao, Zhimiao Lin, Zhanli Tang, Huijun Wang","doi":"10.1016/j.jdermsci.2025.02.006","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Progressive symmetric erythrokeratodermia (PSEK) is a group of hereditary cornification disorders characterized by symmetrical, progressive erythroderma and hyperkeratosis over the body. Loss-of-function variants in SLURP1, encoding secreted Ly-6/uPAR-related protein 1, is known to cause Mal de Meleda, an autosomal recessive palmoplantar keratoderma.</p><p><strong>Objective: </strong>To identify the genetic basis and the pathogenesis of a sporadic patient with PSEK.</p><p><strong>Methods: </strong>Whole-exome sequencing and Sanger sequencing were performed to identify the pathogenic variant(s). The expression of SLURP1 was assessed on the patient's skin tissue by immunofluorescence. Western blotting (WB) and immunofluorescence (IF) were performed on eukaryotic overexpression systems to evaluate the signal peptide (SP) cleavage, subcellular localization and secretion of the mutant SLURP1. Combined WB and IF analyses were conducted on cells co-transfected with FLAG-tagged wild-type SLURP1 and untagged SLURP1-Ala22Asp.</p><p><strong>Results: </strong>We identified a de novo heterozygous variant in SLURP1 (c.65A > C, p.Ala22Asp) affecting the first residue before SP cleavage site in a patient with PSEK. This variant abolished the cleavage site of SP, resulting in translocation deficiency to the Golgi apparatus and decreased secretion of the mutant SLURP1. We also found that the SLURP1-Ala22Asp exerted a dominant-negative effect by impeding the SP cleavage of the wild-type SLURP1 and affecting its subcellular localization and secretion in a dose-dependent manner.</p><p><strong>Conclusion: </strong>We reported the first autosomal-dominant variant in SLURP1 associated with a new phenotype of PSEK in a patient, emphasizing the genetic and clinical heterogeneity of SLURP1-associated genodermatoses.</p>","PeriodicalId":94076,"journal":{"name":"Journal of dermatological science","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of dermatological science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jdermsci.2025.02.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Progressive symmetric erythrokeratodermia (PSEK) is a group of hereditary cornification disorders characterized by symmetrical, progressive erythroderma and hyperkeratosis over the body. Loss-of-function variants in SLURP1, encoding secreted Ly-6/uPAR-related protein 1, is known to cause Mal de Meleda, an autosomal recessive palmoplantar keratoderma.

Objective: To identify the genetic basis and the pathogenesis of a sporadic patient with PSEK.

Methods: Whole-exome sequencing and Sanger sequencing were performed to identify the pathogenic variant(s). The expression of SLURP1 was assessed on the patient's skin tissue by immunofluorescence. Western blotting (WB) and immunofluorescence (IF) were performed on eukaryotic overexpression systems to evaluate the signal peptide (SP) cleavage, subcellular localization and secretion of the mutant SLURP1. Combined WB and IF analyses were conducted on cells co-transfected with FLAG-tagged wild-type SLURP1 and untagged SLURP1-Ala22Asp.

Results: We identified a de novo heterozygous variant in SLURP1 (c.65A > C, p.Ala22Asp) affecting the first residue before SP cleavage site in a patient with PSEK. This variant abolished the cleavage site of SP, resulting in translocation deficiency to the Golgi apparatus and decreased secretion of the mutant SLURP1. We also found that the SLURP1-Ala22Asp exerted a dominant-negative effect by impeding the SP cleavage of the wild-type SLURP1 and affecting its subcellular localization and secretion in a dose-dependent manner.

Conclusion: We reported the first autosomal-dominant variant in SLURP1 associated with a new phenotype of PSEK in a patient, emphasizing the genetic and clinical heterogeneity of SLURP1-associated genodermatoses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
0
期刊最新文献
A signal peptide variant in SLURP1 with dominant-negative effect causes progressive symmetric erythrokeratodermia. Rapid thawing enhances tissue destruction in a mouse model of cutaneous cryoablation: Insights into oxidative stress and neutrophil activation. The role and mechanism of JAK2 inhibitor in endothelial mesenchymal transition in systemic sclerosis. Topical sirolimus suppresses skin fibrosis in a bleomycin-induced mouse model of systemic sclerosis. Editorial board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1