Constitutively active glucagon receptor drives high blood glucose in birds

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Pub Date : 2025-03-03 DOI:10.1038/s41586-025-08811-8
Chang Zhang, Xiangying Xiang, Jian Liu, Yongjie Huang, Jingwen Xue, Qian Sun, Song Leng, Shaobo Liu, Xuefei He, Peng Hu, Xiangjiang Zhan, Qiang Qiu, Shilong Yang, Jürgen Brosius, Cheng Deng
{"title":"Constitutively active glucagon receptor drives high blood glucose in birds","authors":"Chang Zhang, Xiangying Xiang, Jian Liu, Yongjie Huang, Jingwen Xue, Qian Sun, Song Leng, Shaobo Liu, Xuefei He, Peng Hu, Xiangjiang Zhan, Qiang Qiu, Shilong Yang, Jürgen Brosius, Cheng Deng","doi":"10.1038/s41586-025-08811-8","DOIUrl":null,"url":null,"abstract":"<p>As the body’s primary source of energy, the maintenance of blood glucose is indispensable for overall health and metabolic homeostasis. It is predominantly regulated by the glucagon receptor family which is highly conserved in vertebrates<sup>1–4</sup>. Compared to other vertebrates, avian blood glucose levels are relatively high<sup>5,6</sup>, yet its regulatory mechanisms have remained obscure for more than a century. We show that high hepatic expression of the avian glucagon receptor (GCGR) in association with constitutively active Gs signaling was dependent upon the interaction of different domains. <i>In vivo</i> experiments focusing on the regulation of constitutively active GCGR expression in hepatic cells led to correspondingly high blood glucose, rapid hepatic lipid utilization and high metabolic rates <i>via</i> downstream signaling pathway activation in fish, reptiles, birds, and mammals. Furthermore, we identified a point mutation in chicken at the proximal gene region that resulted in GCGR mRNA reduction and weight increase. Overexpressing a natural human GCGR mutation (hsGCGR<sup>H339R</sup>) with modest constitutive activity in mice, demonstrated that high level expression of this variant augmented high blood glucose, while reducing body weight. The combination of high expression and constitutive activity of the glucagon receptor may have contributed to the evolution of flight in the ancestors of birds.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"9 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-08811-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

As the body’s primary source of energy, the maintenance of blood glucose is indispensable for overall health and metabolic homeostasis. It is predominantly regulated by the glucagon receptor family which is highly conserved in vertebrates1–4. Compared to other vertebrates, avian blood glucose levels are relatively high5,6, yet its regulatory mechanisms have remained obscure for more than a century. We show that high hepatic expression of the avian glucagon receptor (GCGR) in association with constitutively active Gs signaling was dependent upon the interaction of different domains. In vivo experiments focusing on the regulation of constitutively active GCGR expression in hepatic cells led to correspondingly high blood glucose, rapid hepatic lipid utilization and high metabolic rates via downstream signaling pathway activation in fish, reptiles, birds, and mammals. Furthermore, we identified a point mutation in chicken at the proximal gene region that resulted in GCGR mRNA reduction and weight increase. Overexpressing a natural human GCGR mutation (hsGCGRH339R) with modest constitutive activity in mice, demonstrated that high level expression of this variant augmented high blood glucose, while reducing body weight. The combination of high expression and constitutive activity of the glucagon receptor may have contributed to the evolution of flight in the ancestors of birds.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
期刊最新文献
Diversity in neuronal activity could be caused by differences in inputs Vision: protecting and restoring a prized sense Human echolocation can be taught Little Shop of Dreams Eye problems cloud NASA’s vision of Mars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1