QCD factorization with multihadron fragmentation functions

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy Physical Review D Pub Date : 2025-03-03 DOI:10.1103/physrevd.111.056001
T. C. Rogers, M. Radici, A. Courtoy, T. Rainaldi
{"title":"QCD factorization with multihadron fragmentation functions","authors":"T. C. Rogers, M. Radici, A. Courtoy, T. Rainaldi","doi":"10.1103/physrevd.111.056001","DOIUrl":null,"url":null,"abstract":"Important aspects of quantum chromodynamics (QCD) factorization theorems are the properties of the objects involved that can be identified as universal. One example is that the definitions of parton densities and fragmentation functions for different types of hadrons differ only in the identity of the nonperturbative states that form the matrix elements, but are otherwise the same. This leads to independence of perturbative calculations on nonperturbative details of external states. It also lends support to interpretations of correlation functions as encapsulations of intrinsic nonperturbative properties. These characteristics have usually been presumed to still hold true in fragmentation functions even when the observed nonperturbative state is a small-mass cluster of n</a:mi></a:math> hadrons rather than simply a single isolated hadron. However, the multidifferential aspect of cross sections that rely on these latter types of fragmentation functions complicates the treatment of kinematical approximations in factorization derivations. That has led to recent claims that the operator definitions for fragmentation functions need to be modified from the single hadron case with nonuniversal prefactors. With such concerns as our motivation, we retrace the steps for factorizing the unpolarized semi-inclusive <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msup><c:mi>e</c:mi><c:mo>+</c:mo></c:msup><c:msup><c:mi>e</c:mi><c:mo>−</c:mo></c:msup></c:math> annihilation cross section and confirm that they do apply without modification to the case of a small-mass multihadron observed in the final state. In particular, we verify that the standard operator definition from single hadron fragmentation, with its usual prefactor, remains equally valid for the small-mass <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>n</e:mi></e:math>-hadron case with the same hard parts and evolution kernels, whereas the more recently proposed definitions with nonuniversal prefactors do not. Our results reaffirm the reliability of most past phenomenological applications of dihadron fragmentation functions. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"29 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.056001","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Important aspects of quantum chromodynamics (QCD) factorization theorems are the properties of the objects involved that can be identified as universal. One example is that the definitions of parton densities and fragmentation functions for different types of hadrons differ only in the identity of the nonperturbative states that form the matrix elements, but are otherwise the same. This leads to independence of perturbative calculations on nonperturbative details of external states. It also lends support to interpretations of correlation functions as encapsulations of intrinsic nonperturbative properties. These characteristics have usually been presumed to still hold true in fragmentation functions even when the observed nonperturbative state is a small-mass cluster of n hadrons rather than simply a single isolated hadron. However, the multidifferential aspect of cross sections that rely on these latter types of fragmentation functions complicates the treatment of kinematical approximations in factorization derivations. That has led to recent claims that the operator definitions for fragmentation functions need to be modified from the single hadron case with nonuniversal prefactors. With such concerns as our motivation, we retrace the steps for factorizing the unpolarized semi-inclusive e+e annihilation cross section and confirm that they do apply without modification to the case of a small-mass multihadron observed in the final state. In particular, we verify that the standard operator definition from single hadron fragmentation, with its usual prefactor, remains equally valid for the small-mass n-hadron case with the same hard parts and evolution kernels, whereas the more recently proposed definitions with nonuniversal prefactors do not. Our results reaffirm the reliability of most past phenomenological applications of dihadron fragmentation functions. Published by the American Physical Society 2025
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
期刊最新文献
Mass and force relations for extremal Einstein-Maxwell-dilaton-axion black holes Numerical calculation of entanglement entropy in de Sitter space Dark matter stabilized by a non-Abelian group: Lessons from the Σ(36) 3HDM Spin kinetic theory with a nonlocal relaxation time approximation Effective actions for domain wall dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1