Pt/α-MoC Catalyst Boosting pH-Universal Hydrogen Evolution Reaction at High Current Densities

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2025-03-03 DOI:10.1021/acsnano.4c16678
Wei Liu, Anyang Wang, Jihan Zhang, Shixiang Yu, Maolin Wang, Shuheng Tian, Haoyi Tang, Ziwen Zhao, Xiao Ren, Yuzheng Guo, Ding Ma
{"title":"Pt/α-MoC Catalyst Boosting pH-Universal Hydrogen Evolution Reaction at High Current Densities","authors":"Wei Liu, Anyang Wang, Jihan Zhang, Shixiang Yu, Maolin Wang, Shuheng Tian, Haoyi Tang, Ziwen Zhao, Xiao Ren, Yuzheng Guo, Ding Ma","doi":"10.1021/acsnano.4c16678","DOIUrl":null,"url":null,"abstract":"Constructing subnanometric electrocatalysts is an efficient method to synergistically accelerate H<sub>2</sub>O dissociation and H<sup>+</sup> reduction for pH-universal hydrogen evolution reaction (HER) for industrial water electrolysis to produce green hydrogen. Here, we construct a subnanometric Pt/α-MoC catalyst, where the α-MoC component can dissociate water effectively, with the rapid proton release kinetics of Pt species on Pt/α-MoC to obtain a good HER performance at high current densities in all-pH electrolytes. Quasi-in situ X-ray photoelectron spectroscopy analyses and density functional theory calculations confirm the highly efficient water dissociation capability of α-MoC and the thermodynamically favorable desorption process of hydrolytically dissociated protons on Pt sites at the high current density. Consequently, Pt/α-MoC requires only a low overpotential of 125 mV to achieve a current density of 1000 mA cm<sup>–2</sup>. Moreover, a Pt/α-MoC-based proton exchange membrane water electrolysis device exhibits a low cell voltage (1.65 V) and promising stability over 300 h with no performance degradation at an industrial-level current density of 1 A cm<sup>–2</sup>. Notably, even at a current of 100 A, the cell voltage remains low at 2.15 V, demonstrating Pt/α-MoC’s promising potential as a scalable alternative for industrial hydrogen production. These findings elucidate the synergistic mechanism of α-MoC and atomically dispersed Pt in promoting efficient HER, offering valuable guidance for the design of electrocatalysts in high current density hydrogen.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"190 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c16678","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Constructing subnanometric electrocatalysts is an efficient method to synergistically accelerate H2O dissociation and H+ reduction for pH-universal hydrogen evolution reaction (HER) for industrial water electrolysis to produce green hydrogen. Here, we construct a subnanometric Pt/α-MoC catalyst, where the α-MoC component can dissociate water effectively, with the rapid proton release kinetics of Pt species on Pt/α-MoC to obtain a good HER performance at high current densities in all-pH electrolytes. Quasi-in situ X-ray photoelectron spectroscopy analyses and density functional theory calculations confirm the highly efficient water dissociation capability of α-MoC and the thermodynamically favorable desorption process of hydrolytically dissociated protons on Pt sites at the high current density. Consequently, Pt/α-MoC requires only a low overpotential of 125 mV to achieve a current density of 1000 mA cm–2. Moreover, a Pt/α-MoC-based proton exchange membrane water electrolysis device exhibits a low cell voltage (1.65 V) and promising stability over 300 h with no performance degradation at an industrial-level current density of 1 A cm–2. Notably, even at a current of 100 A, the cell voltage remains low at 2.15 V, demonstrating Pt/α-MoC’s promising potential as a scalable alternative for industrial hydrogen production. These findings elucidate the synergistic mechanism of α-MoC and atomically dispersed Pt in promoting efficient HER, offering valuable guidance for the design of electrocatalysts in high current density hydrogen.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pt/α-MoC催化剂在高电流密度下促进ph -通用析氢反应
构建亚纳米级电催化剂是协同加速工业水电解ph -通用析氢反应(HER)中H2O解离和H+还原的有效方法。本研究构建了一种亚纳米Pt/α-MoC催化剂,其中α-MoC组分可以有效解离水,并利用Pt/α-MoC在Pt/α-MoC上的快速质子释放动力学,在高电流密度下在所有ph电解质中获得良好的HER性能。准原位x射线光电子能谱分析和密度泛函理论计算证实了α-MoC具有高效的水解离能力,并且在高电流密度下水解解离的质子在Pt位上具有热力学上有利的解吸过程。因此,Pt/α-MoC只需要125 mV的低过电位就可以达到1000 mA cm-2的电流密度。此外,基于Pt/α- moc的质子交换膜电解装置具有较低的电池电压(1.65 V),并且在工业级电流密度为1 a cm-2的情况下,在300 h内具有良好的稳定性,性能不会下降。值得注意的是,即使在100 a的电流下,电池电压仍保持在2.15 V的低水平,这表明Pt/α-MoC作为工业制氢的可扩展替代品具有广阔的潜力。这些发现阐明了α-MoC和原子分散Pt在促进高效HER中的协同作用机制,为高电流密度氢电催化剂的设计提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
Ammonium paramolybdate
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Magnetic Skyrmion Neurons with Homeostasis for Spiking Neural Networks. Phosphorothioate and 2'-Fluoro Ribose Substitution-Mediated Hydrophobic Effect Empowers RNA Probes for Highly Sensitive and Subtype-Selective miRNA Imaging. Exploiting Mg-Interdiffusion-Driven Work-Function Reduction in Ti/Mg/Ti Multilayers to Achieve Low-Resistivity Ohmic Contacts to (001) β-Ga2O3. Issue Publication Information Issue Editorial Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1