{"title":"Moisture-Resistant, Expansive, and Disordered Interlayer Microenvironment-Enabled Robust Sodium Oxide Cathodes","authors":"Zhouhan Lin, Yanyi Wang, Minfeng Chen, Jianhui Zhu, Zhiyi Xie, Ming Yang, Ning Zhao, Hongwei Mi, Jizhang Chen, Chuanxin He, Dingtao Ma, Peixin Zhang","doi":"10.1021/acsnano.4c17035","DOIUrl":null,"url":null,"abstract":"Layered transition metal oxides are some of the most attractive cathode candidates for sodium-ion batteries (SIBs). The main challenge of achieving superior storage performance is to simultaneously boost the ion diffusion kinetics and restrain the undesirable OP4 phase transition upon long-term cycling. In this report, a step-by-step molecule–ion exchange approach is presented to design the high air-stability disordered Ca<sub>0.065</sub>Na<sub>0.55</sub>MnO<sub>2.05</sub> (CNMO-1) cathode functionalized with an expansive and disordered interlayer microenvironment. Theoretical and experimental investigations revealed that water mediation and ion exchange enhance ion diffusion, while Ca ions stabilize the alkali metal layer, preventing phase transition and manganese (Mn) migration during high-voltage cycling. It exhibits a high specific capacity of 135.4 mA h g<sup>–1</sup> at 0.2 A g<sup>–1</sup>. Beyond that, it can also deliver 81.3 mA h g<sup>–1</sup> at the harsh condition of 5 A g<sup>–1</sup> with a high 93.3% retention even after 2000 cycles, surpassing most previous achievements. This proposed strategy can be extended to other K<sup>+</sup>, Zn<sup>2+</sup>, and La<sup>3+</sup> cases, showing an innovative method for designing robust cathodes that enhance the performance of SIBs.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"211 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c17035","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Layered transition metal oxides are some of the most attractive cathode candidates for sodium-ion batteries (SIBs). The main challenge of achieving superior storage performance is to simultaneously boost the ion diffusion kinetics and restrain the undesirable OP4 phase transition upon long-term cycling. In this report, a step-by-step molecule–ion exchange approach is presented to design the high air-stability disordered Ca0.065Na0.55MnO2.05 (CNMO-1) cathode functionalized with an expansive and disordered interlayer microenvironment. Theoretical and experimental investigations revealed that water mediation and ion exchange enhance ion diffusion, while Ca ions stabilize the alkali metal layer, preventing phase transition and manganese (Mn) migration during high-voltage cycling. It exhibits a high specific capacity of 135.4 mA h g–1 at 0.2 A g–1. Beyond that, it can also deliver 81.3 mA h g–1 at the harsh condition of 5 A g–1 with a high 93.3% retention even after 2000 cycles, surpassing most previous achievements. This proposed strategy can be extended to other K+, Zn2+, and La3+ cases, showing an innovative method for designing robust cathodes that enhance the performance of SIBs.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.