Charge State Transition of Spectrally Stabilized Tin-Vacancy Centers in Diamond

IF 6.7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Photonics Pub Date : 2025-03-04 DOI:10.1021/acsphotonics.4c02490
Keita Ikeda, Yiyang Chen, Peng Wang, Yoshiyuki Miyamoto, Takashi Taniguchi, Shinobu Onoda, Mutsuko Hatano, Takayuki Iwasaki
{"title":"Charge State Transition of Spectrally Stabilized Tin-Vacancy Centers in Diamond","authors":"Keita Ikeda, Yiyang Chen, Peng Wang, Yoshiyuki Miyamoto, Takashi Taniguchi, Shinobu Onoda, Mutsuko Hatano, Takayuki Iwasaki","doi":"10.1021/acsphotonics.4c02490","DOIUrl":null,"url":null,"abstract":"Solid-state quantum emitters are important platforms for quantum information processing. The fabrication of the emitters with stable photon frequency and narrow line width is a fundamental issue, and it is essential to understand optical conditions under which the emitter keeps a bright charge state or transitions to a dark state. For these purposes, in this study, we investigate the spectral stability and charge state transition of tin-vacancy (SnV) centers in diamond. The photoluminescence excitation spectra of multiple SnV centers are basically stable over time with nearly transform-limited line widths under resonant excitation, while simultaneous irradiation of resonant and nonresonant lasers makes spectra from the SnV centers unstable. We find that the instability occurs due to the charge state transition to a dark state. The charge state transition rates are quantitatively investigated depending on the laser powers. Lastly, with first-principles calculations, we model the charge state transition of the SnV center under laser irradiation.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"130 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c02490","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state quantum emitters are important platforms for quantum information processing. The fabrication of the emitters with stable photon frequency and narrow line width is a fundamental issue, and it is essential to understand optical conditions under which the emitter keeps a bright charge state or transitions to a dark state. For these purposes, in this study, we investigate the spectral stability and charge state transition of tin-vacancy (SnV) centers in diamond. The photoluminescence excitation spectra of multiple SnV centers are basically stable over time with nearly transform-limited line widths under resonant excitation, while simultaneous irradiation of resonant and nonresonant lasers makes spectra from the SnV centers unstable. We find that the instability occurs due to the charge state transition to a dark state. The charge state transition rates are quantitatively investigated depending on the laser powers. Lastly, with first-principles calculations, we model the charge state transition of the SnV center under laser irradiation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金刚石中光谱稳定锡空位中心的电荷态转变
固体量子发射体是量子信息处理的重要平台。制造具有稳定光子频率和窄线宽的发射器是一个基本问题,并且了解发射器保持明亮电荷状态或过渡到暗状态的光学条件至关重要。为此,在本研究中,我们研究了金刚石中锡空位中心的光谱稳定性和电荷态转变。在谐振激发下,多个SnV中心的光致发光激发光谱随时间基本稳定,线宽接近变换限制,而谐振和非谐振激光器同时照射则使SnV中心的光谱不稳定。我们发现不稳定性的发生是由于电荷态跃迁到暗态。定量研究了随激光功率变化的电荷态跃迁速率。最后,利用第一性原理计算,建立了激光照射下SnV中心电荷态跃迁的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
期刊最新文献
High-Sensitivity RGB–NIR Image Sensor with Dispersion-Engineered Meta-Optics X-Cut Lithium-Niobate-On-Insulator Polarization Beam Splitter with Anisotropic Subwavelength Perturbation Ultra-Fast Broadband Wavelength-Swept DFB Laser Array with 400 kHz Sweep Rate and 60 nm Continuous Tuning Range Two-Photon Endomicroscopic Imaging with Dielectric Metalens A Nonvolatile Programmable Photonic Crystal Nanobeam Cavity Based on Sb2Se3 for Photonic Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1