{"title":"Dynamic Defect Tolerance in Metal Halide Perovskites: From Phenomena to Mechanism","authors":"Guangsheng Liu, Mehri Ghasemi, Qianwen Wei, Baohua Jia, Yu Yang, Xiaoming Wen","doi":"10.1002/aenm.202405239","DOIUrl":null,"url":null,"abstract":"Metal halide perovskite-based devices can exhibit exceptional optoelectronic performance at relatively high defect densities, a phenomenon commonly referred to as defect tolerance, which is one of the most important features of metal halide perovskites (MHPs). Defect tolerance is previously thought to be a static property, determined solely by the composition and manufacturing process. However, recent studies have shown that the defect tolerance of MHPs is dynamic and can vary over time. For example, the power conversion efficiency of MHPs-based solar cells has been found to improve significantly under continuous illumination. Although this is a unique self-optimization behavior of MHPs, it can seriously affect the stability of power output of MHPs-based solar cells in real-world operating conditions. In view of this, extensive research has been conducted, but the physical mechanism of this photoinduced dynamic defect tolerance (DDT) has remained inconclusive, as both the mechanisms and experimental phenomena continue to be subjects of controversy. Therefore, a timely summarization on mechanisms related to DDT is urgently needed. In this review, a systematic overview is first provided of the experimental phenomena, characteristics, and influencing factors of the DDT. Following that, the proposed mechanisms for DDT are summarized, with a focus on carrier-defect and carrier-lattice interactions. Finally, the current challenges faced in DDT research are summarized and an outlook on the future developments is provided. This review aims to offer a comprehensive understanding of DDT in MHPs to enhance the performance and stability of MHPs-based solar cells, thereby facilitating the advancement and commercialization of these technologies.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"38 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202405239","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Metal halide perovskite-based devices can exhibit exceptional optoelectronic performance at relatively high defect densities, a phenomenon commonly referred to as defect tolerance, which is one of the most important features of metal halide perovskites (MHPs). Defect tolerance is previously thought to be a static property, determined solely by the composition and manufacturing process. However, recent studies have shown that the defect tolerance of MHPs is dynamic and can vary over time. For example, the power conversion efficiency of MHPs-based solar cells has been found to improve significantly under continuous illumination. Although this is a unique self-optimization behavior of MHPs, it can seriously affect the stability of power output of MHPs-based solar cells in real-world operating conditions. In view of this, extensive research has been conducted, but the physical mechanism of this photoinduced dynamic defect tolerance (DDT) has remained inconclusive, as both the mechanisms and experimental phenomena continue to be subjects of controversy. Therefore, a timely summarization on mechanisms related to DDT is urgently needed. In this review, a systematic overview is first provided of the experimental phenomena, characteristics, and influencing factors of the DDT. Following that, the proposed mechanisms for DDT are summarized, with a focus on carrier-defect and carrier-lattice interactions. Finally, the current challenges faced in DDT research are summarized and an outlook on the future developments is provided. This review aims to offer a comprehensive understanding of DDT in MHPs to enhance the performance and stability of MHPs-based solar cells, thereby facilitating the advancement and commercialization of these technologies.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.