Thomas Zacharias, Robert Gray, Ryoto Sekine, James Williams, Selina Zhou, Alireza Marandi
{"title":"Energy-Efficient Ultrashort-Pulse Characterization Using Nanophotonic Parametric Amplification","authors":"Thomas Zacharias, Robert Gray, Ryoto Sekine, James Williams, Selina Zhou, Alireza Marandi","doi":"10.1021/acsphotonics.4c02620","DOIUrl":null,"url":null,"abstract":"The growth of ultrafast nanophotonic circuits necessitates the development of energy-efficient on-chip pulse characterization techniques. Nanophotonic realizations of Frequency Resolved Optical Gating (FROG), a common pulse characterization technique in bulk optics, have been challenging due to their noncollinear nature and the lack of efficient nonlinear optical processes in the integrated platform. Here, we experimentally demonstrate a novel FROG-based technique compatible with the nanophotonic platform that leverages the high gain-bandwidth of a dispersion-engineered degenerate optical parametric amplifier (DOPA) for energy-efficient ultrashort pulse characterization. We demonstrate on-chip pulse characterization of sub-80 fs, ∼1 fJ pulses using just ∼60 fJ of gate pulse energy, which is several orders of magnitude lower than the gate pulse energy required for characterizing similar pulses in the bulk counterpart. In the future, we anticipate our work will enable the characterization of ultraweak-ultrashort pulses with energies at the single photon level.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"35 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c02620","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The growth of ultrafast nanophotonic circuits necessitates the development of energy-efficient on-chip pulse characterization techniques. Nanophotonic realizations of Frequency Resolved Optical Gating (FROG), a common pulse characterization technique in bulk optics, have been challenging due to their noncollinear nature and the lack of efficient nonlinear optical processes in the integrated platform. Here, we experimentally demonstrate a novel FROG-based technique compatible with the nanophotonic platform that leverages the high gain-bandwidth of a dispersion-engineered degenerate optical parametric amplifier (DOPA) for energy-efficient ultrashort pulse characterization. We demonstrate on-chip pulse characterization of sub-80 fs, ∼1 fJ pulses using just ∼60 fJ of gate pulse energy, which is several orders of magnitude lower than the gate pulse energy required for characterizing similar pulses in the bulk counterpart. In the future, we anticipate our work will enable the characterization of ultraweak-ultrashort pulses with energies at the single photon level.
期刊介绍:
Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.