{"title":"Novel Biomimetic Collagen-Based Corneal Repair Material Achieved via a \"Killing Two Birds with One Stone\" Strategy Using Carboxymethyl-β-Cyclodextrin.","authors":"Kuan Cheng, Xiaohong Chen, Yifan Yi, Yue Wang, Mengdie Tian, Jingjing Yu, Yuxin Xia, Jingyi Li, Min Zhang, Cuicui Ding","doi":"10.1021/acsbiomaterials.4c02203","DOIUrl":null,"url":null,"abstract":"<p><p>Collagen, as the principal structural component of the cornea, has emerged as a promising biomaterial for artificial corneal owing to its excellent biocompatibility and degradability. However, the mechanical properties of current collagen membrane cannot match the requirements of artificial corneal materials. Inspired by the hierarchical lamellar organization of native corneal stromal collagen, a biomimetic collagen-based corneal repair material was designed via a \"killing two birds with one stone\" strategy. In this strategy, carboxymethyl-β-cyclodextrin (CM-β-CD) was incorporated into the collagen, serving dual functions: regulating the <i>in vitro</i> self-assembly process of collagen molecules and establishing multiple covalent cross-linking sites within the network. Concurrently, controlled external shear forces were applied to induce anisotropic alignment of collagen fibers, effectively replicating the highly organized structural hierarchy characteristic of native corneal stromal tissue. The resulting membrane exhibited a 67% enhancement in tensile strength (0.52 MPa) compared to pure collagen membranes. Notably, <i>in vivo</i> lamellar keratoplasty evaluations revealed accelerated tissue regeneration, achieving complete re-epithelialization within 14 days versus 28 days for controls. These findings establish the material's potential as an advanced artificial corneal for tissue engineering applications.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02203","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Collagen, as the principal structural component of the cornea, has emerged as a promising biomaterial for artificial corneal owing to its excellent biocompatibility and degradability. However, the mechanical properties of current collagen membrane cannot match the requirements of artificial corneal materials. Inspired by the hierarchical lamellar organization of native corneal stromal collagen, a biomimetic collagen-based corneal repair material was designed via a "killing two birds with one stone" strategy. In this strategy, carboxymethyl-β-cyclodextrin (CM-β-CD) was incorporated into the collagen, serving dual functions: regulating the in vitro self-assembly process of collagen molecules and establishing multiple covalent cross-linking sites within the network. Concurrently, controlled external shear forces were applied to induce anisotropic alignment of collagen fibers, effectively replicating the highly organized structural hierarchy characteristic of native corneal stromal tissue. The resulting membrane exhibited a 67% enhancement in tensile strength (0.52 MPa) compared to pure collagen membranes. Notably, in vivo lamellar keratoplasty evaluations revealed accelerated tissue regeneration, achieving complete re-epithelialization within 14 days versus 28 days for controls. These findings establish the material's potential as an advanced artificial corneal for tissue engineering applications.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture