Elaidic acid induces testicular oxidative stress, inflammation, Wnt/β-catenin disruption and abnormalities in steroidogenesis, spermatogenesis and histo-architecture in Sprague Dawley rats
Fuad M. Alzahrani , Muhammad Faisal Hayat , Ali Akbar , Syeda Sania Zahara , Meshari A. Alsuwat , Khalid J. Alzahrani , Ahmed El-Emam
{"title":"Elaidic acid induces testicular oxidative stress, inflammation, Wnt/β-catenin disruption and abnormalities in steroidogenesis, spermatogenesis and histo-architecture in Sprague Dawley rats","authors":"Fuad M. Alzahrani , Muhammad Faisal Hayat , Ali Akbar , Syeda Sania Zahara , Meshari A. Alsuwat , Khalid J. Alzahrani , Ahmed El-Emam","doi":"10.1016/j.fct.2025.115365","DOIUrl":null,"url":null,"abstract":"<div><div>Elaidic Acid (EA) is a major <em>trans</em>-fatty acid that has garnered significant attention due to its potential role in inducing systemic toxicity. The current investigation was conducted to assess the toxic effects of EA (50 mg/kg, 100 mg/kg, and 150 mg/kg) on testicular tissues of Sprague Dawley rats. EA intoxication disrupted Wnt/β-catenin via downregulating the expression of WNT3A and TCF7L2 while upregulating the expression of AXIN1 and GSK-3β. The activities of antioxidant enzymes were reduced while the levels of cellular oxidative stress were escalated following the EA exposure. EA administration disrupted the process of steroidogenesis as well as spermatogenesis through the downregulation of CYP11A1, 5α-reductase, 3β-HSD, CYP17A1, and StAR while elevating spermatogenic abnormalities in head, tail and neck of sperm cells. The levels of LH, androgen binding protein, FSH, inhibin B, plasma testosterone and estradiol were lowered after EA administration. Testicular tissues showed inflammatory responses after EA exposure that is evident by elevated levels of TNF-α, IL-1β, COX-2, IL-6 and NF-κB. The expressions of Bax and Caspase-3 were upsurged while expression of Bcl-2 was reduced following the EA intoxication. These findings showed EA exerted toxic effects on testicular tissues via elevating oxidative stress, inflammation and apoptosis.</div></div>","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":"200 ","pages":"Article 115365"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Chemical Toxicology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278691525001322","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Elaidic Acid (EA) is a major trans-fatty acid that has garnered significant attention due to its potential role in inducing systemic toxicity. The current investigation was conducted to assess the toxic effects of EA (50 mg/kg, 100 mg/kg, and 150 mg/kg) on testicular tissues of Sprague Dawley rats. EA intoxication disrupted Wnt/β-catenin via downregulating the expression of WNT3A and TCF7L2 while upregulating the expression of AXIN1 and GSK-3β. The activities of antioxidant enzymes were reduced while the levels of cellular oxidative stress were escalated following the EA exposure. EA administration disrupted the process of steroidogenesis as well as spermatogenesis through the downregulation of CYP11A1, 5α-reductase, 3β-HSD, CYP17A1, and StAR while elevating spermatogenic abnormalities in head, tail and neck of sperm cells. The levels of LH, androgen binding protein, FSH, inhibin B, plasma testosterone and estradiol were lowered after EA administration. Testicular tissues showed inflammatory responses after EA exposure that is evident by elevated levels of TNF-α, IL-1β, COX-2, IL-6 and NF-κB. The expressions of Bax and Caspase-3 were upsurged while expression of Bcl-2 was reduced following the EA intoxication. These findings showed EA exerted toxic effects on testicular tissues via elevating oxidative stress, inflammation and apoptosis.
期刊介绍:
Food and Chemical Toxicology (FCT), an internationally renowned journal, that publishes original research articles and reviews on toxic effects, in animals and humans, of natural or synthetic chemicals occurring in the human environment with particular emphasis on food, drugs, and chemicals, including agricultural and industrial safety, and consumer product safety. Areas such as safety evaluation of novel foods and ingredients, biotechnologically-derived products, and nanomaterials are included in the scope of the journal. FCT also encourages submission of papers on inter-relationships between nutrition and toxicology and on in vitro techniques, particularly those fostering the 3 Rs.
The principal aim of the journal is to publish high impact, scholarly work and to serve as a multidisciplinary forum for research in toxicology. Papers submitted will be judged on the basis of scientific originality and contribution to the field, quality and subject matter. Studies should address at least one of the following:
-Adverse physiological/biochemical, or pathological changes induced by specific defined substances
-New techniques for assessing potential toxicity, including molecular biology
-Mechanisms underlying toxic phenomena
-Toxicological examinations of specific chemicals or consumer products, both those showing adverse effects and those demonstrating safety, that meet current standards of scientific acceptability.
Authors must clearly and briefly identify what novel toxic effect (s) or toxic mechanism (s) of the chemical are being reported and what their significance is in the abstract. Furthermore, sufficient doses should be included in order to provide information on NOAEL/LOAEL values.