Berberine Intervention Mitigates Myocardial Ischemia-Reperfusion Injury in a Rat Model: Mechanistic Insights via miR-184 Signaling.

IF 5.3 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Biologics : Targets & Therapy Pub Date : 2025-02-25 eCollection Date: 2025-01-01 DOI:10.2147/BTT.S479430
Haichen Yang, Gang Cao, Xia Li, Zhikun Zhao, Yong Wang, Fei Xu
{"title":"Berberine Intervention Mitigates Myocardial Ischemia-Reperfusion Injury in a Rat Model: Mechanistic Insights via miR-184 Signaling.","authors":"Haichen Yang, Gang Cao, Xia Li, Zhikun Zhao, Yong Wang, Fei Xu","doi":"10.2147/BTT.S479430","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ischemia-reperfusion (I/R) injury is a major contributor to myocardial dysfunction and tissue damage. A natural alkaloid-Berberine having a wide range of pharmacological properties, has garnered interest for its potential cardioprotective properties. This study aimed to investigate the protective effects of berberine on myocardial tissue in a rat model of myocardial ischemia-reperfusion (I/R) injury. Additionally, the study explored the role of the miR-184/NOTCH1 signaling pathway in mediating these effects.</p><p><strong>Methods: </strong>Male Wistar rats were randomly assigned to five groups: sham-operated control, I/R injury, I/R treated with berberine, I/R treated with inhibitor NC and I/R treated with a miR-184 inhibitor. The I/R injury was induced by ligating the left anterior descending (LAD) coronary artery for 30 minutes, followed by 2 hours of reperfusion. Berberine was administered orally at 100 mg/kg/day for 2 weeks, and the miR-184 inhibitor was administered via intraperitoneal injection. Hemodynamic parameters were recorded using a pressure sensor connected to a catheter inserted into the left ventricle. Myocardial infarct size was assessed using TTC staining, while histological and molecular changes were evaluated through H&E staining, TUNEL assay, and Western blotting. The expression levels of target genes were analyzed using quantitative real-time PCR (qRT-PCR).</p><p><strong>Results: </strong>Berberine significantly reduced myocardial infarct size and improved hemodynamic parameters compared to the untreated I/R group. Additionally, berberine treatment attenuated apoptosis as evidenced by decreased TUNEL-positive cells. The miR-184 inhibitor also demonstrated protective effects by modulating key signaling pathways involved in myocardial injury. Western blot analysis revealed downregulation of NOTCH1 and HES1 expression in treated groups, indicating a potential mechanism for the observed cardio protection.</p><p><strong>Conclusion: </strong>Berberine and miR-184 inhibition offer significant protection against myocardial ischemia-reperfusion injury. These findings suggest that targeting miR-184 and associated pathways may be a promising therapeutic strategy for reducing cardiac damage following ischemia-reperfusion.</p>","PeriodicalId":9025,"journal":{"name":"Biologics : Targets & Therapy","volume":"19 ","pages":"31-42"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871928/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologics : Targets & Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/BTT.S479430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Ischemia-reperfusion (I/R) injury is a major contributor to myocardial dysfunction and tissue damage. A natural alkaloid-Berberine having a wide range of pharmacological properties, has garnered interest for its potential cardioprotective properties. This study aimed to investigate the protective effects of berberine on myocardial tissue in a rat model of myocardial ischemia-reperfusion (I/R) injury. Additionally, the study explored the role of the miR-184/NOTCH1 signaling pathway in mediating these effects.

Methods: Male Wistar rats were randomly assigned to five groups: sham-operated control, I/R injury, I/R treated with berberine, I/R treated with inhibitor NC and I/R treated with a miR-184 inhibitor. The I/R injury was induced by ligating the left anterior descending (LAD) coronary artery for 30 minutes, followed by 2 hours of reperfusion. Berberine was administered orally at 100 mg/kg/day for 2 weeks, and the miR-184 inhibitor was administered via intraperitoneal injection. Hemodynamic parameters were recorded using a pressure sensor connected to a catheter inserted into the left ventricle. Myocardial infarct size was assessed using TTC staining, while histological and molecular changes were evaluated through H&E staining, TUNEL assay, and Western blotting. The expression levels of target genes were analyzed using quantitative real-time PCR (qRT-PCR).

Results: Berberine significantly reduced myocardial infarct size and improved hemodynamic parameters compared to the untreated I/R group. Additionally, berberine treatment attenuated apoptosis as evidenced by decreased TUNEL-positive cells. The miR-184 inhibitor also demonstrated protective effects by modulating key signaling pathways involved in myocardial injury. Western blot analysis revealed downregulation of NOTCH1 and HES1 expression in treated groups, indicating a potential mechanism for the observed cardio protection.

Conclusion: Berberine and miR-184 inhibition offer significant protection against myocardial ischemia-reperfusion injury. These findings suggest that targeting miR-184 and associated pathways may be a promising therapeutic strategy for reducing cardiac damage following ischemia-reperfusion.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biologics : Targets & Therapy
Biologics : Targets & Therapy MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
8.30
自引率
0.00%
发文量
22
审稿时长
16 weeks
期刊最新文献
Unraveling Tumor-to-Tumor Metastasis: Insights into Pathogenesis, Diagnostic Challenges, and Treatment Modalities. Berberine Intervention Mitigates Myocardial Ischemia-Reperfusion Injury in a Rat Model: Mechanistic Insights via miR-184 Signaling. ATF3 Knockdown Exacerbates Astrocyte Activation by Inhibiting Phosphorylation of Drp1 in Ischemic Stroke. First Indonesian Nasopharyngeal Cancer Whole Epigenome Sequencing Identify Tumour Suppressor CpG Methylation. Lactobacillus Protects Against Chronic Suppurative Otitis Media via Modulating RFTN1/ Lipid Raft /TLR4-Mediated Inflammation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1