{"title":"Morphometric variation in central airways of ten different human lung.","authors":"Mohammadali Monfared, Mohammadhossein Mohammadzadeheydgahi, Zahra Farshidfar, Samrad Mehrabi, Sasan Sadrizadeh, Omid Abouali","doi":"10.1088/2057-1976/adbbf4","DOIUrl":null,"url":null,"abstract":"<p><p>The prevailing scarcity of accurate lung models poses challenges to predicting airborne particle deposition across genders. The present work demonstrates the details of the geometrical specifications of central airways for ten healthy humans (male and female). The data were extracted from HRCT scan images with a minimum resolution of 1 mm. The images cover the trachea to all branches of the G6-G8 generations. The presented data include airway segment diameters, lengths, branching angles, and angles of inclination to gravity, in addition to their average and standard deviation. Our first goal in this study is to generate an average lung model exclusively for humans in laboratory and 1D numerical inhalation investigations. Thus, our primary emphasis in this work is to find the average suitable inclination angle in all generations of central airways for men and women by comparing the available data from previous studies. In the second part of the paper, we have also investigated the particle deposition efficiency in these ten models using the Mimetikos PreludiumTM software package. We compared the regional deposition between males and females and the available respiratory system models.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/adbbf4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
The prevailing scarcity of accurate lung models poses challenges to predicting airborne particle deposition across genders. The present work demonstrates the details of the geometrical specifications of central airways for ten healthy humans (male and female). The data were extracted from HRCT scan images with a minimum resolution of 1 mm. The images cover the trachea to all branches of the G6-G8 generations. The presented data include airway segment diameters, lengths, branching angles, and angles of inclination to gravity, in addition to their average and standard deviation. Our first goal in this study is to generate an average lung model exclusively for humans in laboratory and 1D numerical inhalation investigations. Thus, our primary emphasis in this work is to find the average suitable inclination angle in all generations of central airways for men and women by comparing the available data from previous studies. In the second part of the paper, we have also investigated the particle deposition efficiency in these ten models using the Mimetikos PreludiumTM software package. We compared the regional deposition between males and females and the available respiratory system models.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.