High-resolution bioprinting of complex bio-structures via engineering of the photopatterning approaches and adaptive segmentation.

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Biofabrication Pub Date : 2025-03-03 DOI:10.1088/1758-5090/adbc22
Ceren Babayigit, Jorge Alfonso Tavares Negrete, Rahim Esfandyarpour, Ozdal Boyraz
{"title":"High-resolution bioprinting of complex bio-structures via engineering of the photopatterning approaches and adaptive segmentation.","authors":"Ceren Babayigit, Jorge Alfonso Tavares Negrete, Rahim Esfandyarpour, Ozdal Boyraz","doi":"10.1088/1758-5090/adbc22","DOIUrl":null,"url":null,"abstract":"<p><p>Digital Light Processing (DLP) technology has significantly advanced various applications, including 3D bioprinting, through its precision and speed in creating detailed structures. While traditional DLP systems rely on light-emitting diodes (LEDs), their limited power spectral density, high etendue, and spectral inefficiency constrain their performance in resolution, dynamic range, printing time, and cell viability. This study proposes and evaluates a dual-laser DLP system to overcome these limitations and enhance bioprinting performance. The proposed dual-laser system resulted in a twofold increase in resolution and a twelvefold reduction in printing time compared to the LED system. The system's capability was evaluated by printing three distinct designs, achieving a maximum percentage error of 1.16% and a minimum of 0.02% in accurately reproducing complex structures. Further, the impact of exposure times (10-30 s) and light intensities (0.044-0.11 mW/mm2) on the viability and morphology of 3T3 fibroblasts in GelMA and GelMA-PEGDA hydrogels is assessed. The findings reveal a clear relationship between longer exposure times and reduced cell viability. On day 7, samples exposed for extended periods exhibited the lowest metabolic activity and cell density, with differences of ~40% between treatments. However, all samples show recovery by day 7, with GelMA samples exhibiting up to a sixfold increase in metabolic activity and GelMA-PEGDA samples showing up to a twofold increase. In contrast, light intensity variations had a lesser effect, with a maximum variation of 15% in cell viability. We introduced a segmented printing method to mitigate over-crosslinking and enhance the dynamic range, utilizing an adaptive segmentation control strategy. This method, demonstrated by printing a bronchial model with a 14.43x compression ratio, improved resolution and maintained cell viability up to 90% for GelMA and 85% for GelMA-PEGDA during 7 days of culture. The proposed dual-laser system and adaptive segmentation method were confirmed through successful prints with diverse bio-inks and complex structures, underscoring its advantages over traditional LED systems in advancing 3D bioprinting.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/adbc22","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Digital Light Processing (DLP) technology has significantly advanced various applications, including 3D bioprinting, through its precision and speed in creating detailed structures. While traditional DLP systems rely on light-emitting diodes (LEDs), their limited power spectral density, high etendue, and spectral inefficiency constrain their performance in resolution, dynamic range, printing time, and cell viability. This study proposes and evaluates a dual-laser DLP system to overcome these limitations and enhance bioprinting performance. The proposed dual-laser system resulted in a twofold increase in resolution and a twelvefold reduction in printing time compared to the LED system. The system's capability was evaluated by printing three distinct designs, achieving a maximum percentage error of 1.16% and a minimum of 0.02% in accurately reproducing complex structures. Further, the impact of exposure times (10-30 s) and light intensities (0.044-0.11 mW/mm2) on the viability and morphology of 3T3 fibroblasts in GelMA and GelMA-PEGDA hydrogels is assessed. The findings reveal a clear relationship between longer exposure times and reduced cell viability. On day 7, samples exposed for extended periods exhibited the lowest metabolic activity and cell density, with differences of ~40% between treatments. However, all samples show recovery by day 7, with GelMA samples exhibiting up to a sixfold increase in metabolic activity and GelMA-PEGDA samples showing up to a twofold increase. In contrast, light intensity variations had a lesser effect, with a maximum variation of 15% in cell viability. We introduced a segmented printing method to mitigate over-crosslinking and enhance the dynamic range, utilizing an adaptive segmentation control strategy. This method, demonstrated by printing a bronchial model with a 14.43x compression ratio, improved resolution and maintained cell viability up to 90% for GelMA and 85% for GelMA-PEGDA during 7 days of culture. The proposed dual-laser system and adaptive segmentation method were confirmed through successful prints with diverse bio-inks and complex structures, underscoring its advantages over traditional LED systems in advancing 3D bioprinting.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
期刊最新文献
Acetylcholine-loaded nanoparticles protect against doxorubicin-induced toxicity inin vitrocardiac spheroids. Biofabrication of an in situ hypoxia-delivery scaffold for cartilage regeneration. ATPS-enabled single-step printing of chemically and mechanically on-demand tunable perfusable channels in ejectable constructs. Graphene oxide and in-situ carbon reinforced hydroxyapatite scaffolds via ultraviolet-curing 3D printing technology with high osteoinductivity for bone regeneration. High-resolution bioprinting of complex bio-structures via engineering of the photopatterning approaches and adaptive segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1