Metabolome and transcriptome analyses for explore heat stress responses and adaptation mechanisms in Rhododendron henanense subsp. lingbaoense.

IF 4.3 2区 生物学 Q1 PLANT SCIENCES BMC Plant Biology Pub Date : 2025-03-04 DOI:10.1186/s12870-025-06305-3
Yonghui Li, Xufeng Li, Mengxin Lei, Junwang Han, Ziming Huang, Kai Zhang, Yifan Yang, Ning Yang, Xiangli Yu, Xiaojun Zhou
{"title":"Metabolome and transcriptome analyses for explore heat stress responses and adaptation mechanisms in Rhododendron henanense subsp. lingbaoense.","authors":"Yonghui Li, Xufeng Li, Mengxin Lei, Junwang Han, Ziming Huang, Kai Zhang, Yifan Yang, Ning Yang, Xiangli Yu, Xiaojun Zhou","doi":"10.1186/s12870-025-06305-3","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we aimed to investigate the heat tolerance mechanism in Rhododendron henanense subsp. lingbaoense (Rhl). Rhl seedlings were treated at 40℃ (RLH), 32℃ (RLM), and 24℃ (RLC), and the changes in transcriptome and metabolome were compared. Overall, 78 differentially expressed metabolites were detected, and 8450 differentially expressed genes (DEGs) were identified. KEGG analysis revealed that the DEGs in RLH vs. RLC were mainly enriched in photosynthesis, secondary metabolic biosynthesis, and flavonoid biosynthesis. Most genes encoding glutathione-S-transferase were upregulated, whereas genes related to heat shock proteins were significantly downregulated. 31 genes related to photosynthesis were significantly upregulated (P-value < 0.001). It was speculated that these DEGs are related to the response of Rhl to high temperature stress (HTS). Overall, 9 TF families might be the key regulators of Heat stress response pathways in Rhl. Mining of DEGs revealed that the expression of some genes related to heat stress function increased highly significantly, e.g., the Rhe008987 related to Glutathione-S-transferase, Rhe016769 encoding peroxidase, and Rhe001827 encoding chalcone and stilbene synthases. Metabolome and transcriptome correlation analysis revealed that three comparison groups (RLH vs. RLC, RLH vs. RLM, and RLM vs. RLC) shared 12 metabolic pathways in which the DEMs were enriched. HTS inhibited or induced expression of genes in flavonoid biosynthesis pathway and led to decreace in kaempferol content and quercetin accumulation. HT induced expression of genes in ABC pathway, which may be one of the reasons for the significant accumulation of L-isoleucine, L-leucine, and L-proline. In this study, DEGs mining found that the expression of some genes related to heat stress function increased highly significantly. And two omics correlation analysis revealed that 12 metabolic pathways were enriched in three comparison groups. These results helped in elucidating the molecular mechanisms of response of Rhl to HTS.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"280"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877896/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06305-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we aimed to investigate the heat tolerance mechanism in Rhododendron henanense subsp. lingbaoense (Rhl). Rhl seedlings were treated at 40℃ (RLH), 32℃ (RLM), and 24℃ (RLC), and the changes in transcriptome and metabolome were compared. Overall, 78 differentially expressed metabolites were detected, and 8450 differentially expressed genes (DEGs) were identified. KEGG analysis revealed that the DEGs in RLH vs. RLC were mainly enriched in photosynthesis, secondary metabolic biosynthesis, and flavonoid biosynthesis. Most genes encoding glutathione-S-transferase were upregulated, whereas genes related to heat shock proteins were significantly downregulated. 31 genes related to photosynthesis were significantly upregulated (P-value < 0.001). It was speculated that these DEGs are related to the response of Rhl to high temperature stress (HTS). Overall, 9 TF families might be the key regulators of Heat stress response pathways in Rhl. Mining of DEGs revealed that the expression of some genes related to heat stress function increased highly significantly, e.g., the Rhe008987 related to Glutathione-S-transferase, Rhe016769 encoding peroxidase, and Rhe001827 encoding chalcone and stilbene synthases. Metabolome and transcriptome correlation analysis revealed that three comparison groups (RLH vs. RLC, RLH vs. RLM, and RLM vs. RLC) shared 12 metabolic pathways in which the DEMs were enriched. HTS inhibited or induced expression of genes in flavonoid biosynthesis pathway and led to decreace in kaempferol content and quercetin accumulation. HT induced expression of genes in ABC pathway, which may be one of the reasons for the significant accumulation of L-isoleucine, L-leucine, and L-proline. In this study, DEGs mining found that the expression of some genes related to heat stress function increased highly significantly. And two omics correlation analysis revealed that 12 metabolic pathways were enriched in three comparison groups. These results helped in elucidating the molecular mechanisms of response of Rhl to HTS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
期刊最新文献
Antioxidant capacity, biochemical composition, and mineral composition of leaves in two apple species (Malus domestica Borkh. and M. kirghisorum Al. Fed. & Fed.). Differential effects of exogenous VOCs on the growth and stress responses of Cunninghamia lanceolata seedlings under low phosphorus. Genome-wide characterization of effector proteins in Fusarium zanthoxyli and their effects on plant's innate immunity responses. The CGA1-SNAT regulatory module potentially contributes to cytokinin-mediated melatonin biosynthesis and drought tolerance in wheat. Systematic identification of R2R3-MYB S6 subfamily genes in Brassicaceae and its role in anthocyanin biosynthesis in Brassica crops.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1