Application of Artificial Intelligence-Based Approaches in the Discovery and Development of Protein Kinase Inhibitors (PKIs) Targeting Anticancer Activity.
Emanuelly Karla Araújo Padilha, Wadja Feitosa Dos Santos Silva, Arestides Alves Lins, Edeildo Ferreira da Silva-Júnior
{"title":"Application of Artificial Intelligence-Based Approaches in the Discovery and Development of Protein Kinase Inhibitors (PKIs) Targeting Anticancer Activity.","authors":"Emanuelly Karla Araújo Padilha, Wadja Feitosa Dos Santos Silva, Arestides Alves Lins, Edeildo Ferreira da Silva-Júnior","doi":"10.2174/0115680266340766250124063854","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, we present an in-depth review focused on the application of different artificial intelligence (AI) approaches for developing protein kinase inhibitors (PKIs) targeting anticancer activity, focusing on how the AI-based tools are making promising advances in drug design and development, by predicting active compounds for essential targets involved in cancer. In this context, the machine learning (ML) approach performs a critical role by promoting a fast analysis of a thousand potential inhibitors within a small gap of time by processing large datasets of chemical data, putting it at a higher level than other traditionally used methods for screening molecules. In general, AI-based screening of compounds reduces the time of the work and increases the chances of success in the end. Additionally, we have covered recent studies focused on the application of deep neural networks (DNNs) and quantitative structure-activity relationships (QSAR) to identify PKIs. Furthermore, the paper covers new AI-based methodologies for filtering or improving datasets of potential compounds or even targets, such as generative models for the creation of novel compounds and ML-based strategies to collect information from different databases, increasing the efficiency in drug design and development. Finally, this review highlights how AI-based tools are increasing and improving the field of PKIs targeting cancer, making them an alternative for the future in the medicinal chemistry field.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266340766250124063854","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, we present an in-depth review focused on the application of different artificial intelligence (AI) approaches for developing protein kinase inhibitors (PKIs) targeting anticancer activity, focusing on how the AI-based tools are making promising advances in drug design and development, by predicting active compounds for essential targets involved in cancer. In this context, the machine learning (ML) approach performs a critical role by promoting a fast analysis of a thousand potential inhibitors within a small gap of time by processing large datasets of chemical data, putting it at a higher level than other traditionally used methods for screening molecules. In general, AI-based screening of compounds reduces the time of the work and increases the chances of success in the end. Additionally, we have covered recent studies focused on the application of deep neural networks (DNNs) and quantitative structure-activity relationships (QSAR) to identify PKIs. Furthermore, the paper covers new AI-based methodologies for filtering or improving datasets of potential compounds or even targets, such as generative models for the creation of novel compounds and ML-based strategies to collect information from different databases, increasing the efficiency in drug design and development. Finally, this review highlights how AI-based tools are increasing and improving the field of PKIs targeting cancer, making them an alternative for the future in the medicinal chemistry field.
期刊介绍:
Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.