Application of Artificial Intelligence-Based Approaches in the Discovery and Development of Protein Kinase Inhibitors (PKIs) Targeting Anticancer Activity.

IF 2.9 4区 医学 Q3 CHEMISTRY, MEDICINAL Current topics in medicinal chemistry Pub Date : 2025-02-28 DOI:10.2174/0115680266340766250124063854
Emanuelly Karla Araújo Padilha, Wadja Feitosa Dos Santos Silva, Arestides Alves Lins, Edeildo Ferreira da Silva-Júnior
{"title":"Application of Artificial Intelligence-Based Approaches in the Discovery and Development of Protein Kinase Inhibitors (PKIs) Targeting Anticancer Activity.","authors":"Emanuelly Karla Araújo Padilha, Wadja Feitosa Dos Santos Silva, Arestides Alves Lins, Edeildo Ferreira da Silva-Júnior","doi":"10.2174/0115680266340766250124063854","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, we present an in-depth review focused on the application of different artificial intelligence (AI) approaches for developing protein kinase inhibitors (PKIs) targeting anticancer activity, focusing on how the AI-based tools are making promising advances in drug design and development, by predicting active compounds for essential targets involved in cancer. In this context, the machine learning (ML) approach performs a critical role by promoting a fast analysis of a thousand potential inhibitors within a small gap of time by processing large datasets of chemical data, putting it at a higher level than other traditionally used methods for screening molecules. In general, AI-based screening of compounds reduces the time of the work and increases the chances of success in the end. Additionally, we have covered recent studies focused on the application of deep neural networks (DNNs) and quantitative structure-activity relationships (QSAR) to identify PKIs. Furthermore, the paper covers new AI-based methodologies for filtering or improving datasets of potential compounds or even targets, such as generative models for the creation of novel compounds and ML-based strategies to collect information from different databases, increasing the efficiency in drug design and development. Finally, this review highlights how AI-based tools are increasing and improving the field of PKIs targeting cancer, making them an alternative for the future in the medicinal chemistry field.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266340766250124063854","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, we present an in-depth review focused on the application of different artificial intelligence (AI) approaches for developing protein kinase inhibitors (PKIs) targeting anticancer activity, focusing on how the AI-based tools are making promising advances in drug design and development, by predicting active compounds for essential targets involved in cancer. In this context, the machine learning (ML) approach performs a critical role by promoting a fast analysis of a thousand potential inhibitors within a small gap of time by processing large datasets of chemical data, putting it at a higher level than other traditionally used methods for screening molecules. In general, AI-based screening of compounds reduces the time of the work and increases the chances of success in the end. Additionally, we have covered recent studies focused on the application of deep neural networks (DNNs) and quantitative structure-activity relationships (QSAR) to identify PKIs. Furthermore, the paper covers new AI-based methodologies for filtering or improving datasets of potential compounds or even targets, such as generative models for the creation of novel compounds and ML-based strategies to collect information from different databases, increasing the efficiency in drug design and development. Finally, this review highlights how AI-based tools are increasing and improving the field of PKIs targeting cancer, making them an alternative for the future in the medicinal chemistry field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
2.90%
发文量
186
审稿时长
3-8 weeks
期刊介绍: Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.
期刊最新文献
Common Signaling Pathways in Cancer and Alzheimer's Disease May Point to New Treatments. The Impact and Role of Artificial Intelligence (AI) in Healthcare: Systematic Review. Chemical Profiling and Antibacterial Potential of Methanol Extract of Solanum xanthocarpum Fruits against Methicillin-Resistant Staphylococcus aureus: Implications for AMR Management. Application of Artificial Intelligence-Based Approaches in the Discovery and Development of Protein Kinase Inhibitors (PKIs) Targeting Anticancer Activity. A Comprehensive Review on the Antimicrobial Activity of the Genus Artemisia, Artemisinin, and its Derivatives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1