Proteomic Analysis of the Effects of Shenzhu Tiaopi Granules on Model Rats with Type 2 Diabetes Mellitus.

IF 2.8 3区 医学 Q3 ENDOCRINOLOGY & METABOLISM Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy Pub Date : 2025-02-25 eCollection Date: 2025-01-01 DOI:10.2147/DMSO.S493036
Jin-Dong Zhao, Zhao-Hui Fang
{"title":"Proteomic Analysis of the Effects of Shenzhu Tiaopi Granules on Model Rats with Type 2 Diabetes Mellitus.","authors":"Jin-Dong Zhao, Zhao-Hui Fang","doi":"10.2147/DMSO.S493036","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Shenzhu Tiaopi granule (STG) has antidiabetic functions. Data-independent acquisition proteomic technology is an integral part of systems biology. Herein, proteomics was used to analyse the effects of STG on type 2 diabetes mellitus (T2DM) and the mechanism by which STG normalizes glucose metabolism.</p><p><strong>Methods: </strong>Goto-Kakizaki (GK) T2DM model (Mod) rats, aged 15-16 weeks and with a fasting blood glucose (FBG) level of ≥11.1 mmol/L, were treated with metformin or STG for 12 weeks. Wistar rats aged 15-16 weeks were included in the control (Con) group. Body weight, FBG, total cholesterol (TC), total triglyceride (TG) levels and low-density lipoprotein (LDL-C) levels were measured, and pathological observation, Western blot analysis and data-independent acquisition proteomics of the liver were performed.</p><p><strong>Results: </strong>Significant differences in FBG, TC, TG, LDL-C (p < 0.01) and pathological liver morphology were observed between the Mod group and Con group, whereas both metformin and STG normalized the glucose and lipid metabolism indicators (p < 0.05 or p < 0.01). In total, 5856 proteins were identified via proteomic analysis, 97 of which were significantly differentially expressed in the liver and affected fatty acid metabolism, unsaturated fatty acid biosynthesis, the peroxisome proliferator-activated receptor (PPAR) signalling pathway, pyruvate metabolism, and terpenoid backbone biosynthesis. Screening identified 10 target proteins, including perilipin-2 (Plin2), pyruvate dehydrogenase kinase 4, farnesyl diphosphate synthase (Fdps) and farnesyl-diphosphate farnesyltransferase 1. Among these proteins, the key proteins were Plin2 and Fdps, which were found to be associated with the PPAR signalling pathway and terpenoid backbone biosynthesis via relationship networks. Plin2 and Fdps are closely related to hyperglycaemia. STG can downregulate Plin2 and upregulate Fdps (p < 0.01).</p><p><strong>Conclusion: </strong>STG ameliorated hyperglycaemia by significantly altering the expression of different proteins, especially Fdps and Plin2, in the livers of GK rats. These findings may reveal the potential of traditional Chinese medicine for treating T2DM.</p>","PeriodicalId":11116,"journal":{"name":"Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy","volume":"18 ","pages":"583-599"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871873/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DMSO.S493036","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Shenzhu Tiaopi granule (STG) has antidiabetic functions. Data-independent acquisition proteomic technology is an integral part of systems biology. Herein, proteomics was used to analyse the effects of STG on type 2 diabetes mellitus (T2DM) and the mechanism by which STG normalizes glucose metabolism.

Methods: Goto-Kakizaki (GK) T2DM model (Mod) rats, aged 15-16 weeks and with a fasting blood glucose (FBG) level of ≥11.1 mmol/L, were treated with metformin or STG for 12 weeks. Wistar rats aged 15-16 weeks were included in the control (Con) group. Body weight, FBG, total cholesterol (TC), total triglyceride (TG) levels and low-density lipoprotein (LDL-C) levels were measured, and pathological observation, Western blot analysis and data-independent acquisition proteomics of the liver were performed.

Results: Significant differences in FBG, TC, TG, LDL-C (p < 0.01) and pathological liver morphology were observed between the Mod group and Con group, whereas both metformin and STG normalized the glucose and lipid metabolism indicators (p < 0.05 or p < 0.01). In total, 5856 proteins were identified via proteomic analysis, 97 of which were significantly differentially expressed in the liver and affected fatty acid metabolism, unsaturated fatty acid biosynthesis, the peroxisome proliferator-activated receptor (PPAR) signalling pathway, pyruvate metabolism, and terpenoid backbone biosynthesis. Screening identified 10 target proteins, including perilipin-2 (Plin2), pyruvate dehydrogenase kinase 4, farnesyl diphosphate synthase (Fdps) and farnesyl-diphosphate farnesyltransferase 1. Among these proteins, the key proteins were Plin2 and Fdps, which were found to be associated with the PPAR signalling pathway and terpenoid backbone biosynthesis via relationship networks. Plin2 and Fdps are closely related to hyperglycaemia. STG can downregulate Plin2 and upregulate Fdps (p < 0.01).

Conclusion: STG ameliorated hyperglycaemia by significantly altering the expression of different proteins, especially Fdps and Plin2, in the livers of GK rats. These findings may reveal the potential of traditional Chinese medicine for treating T2DM.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy
Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy Pharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
5.90
自引率
6.10%
发文量
431
审稿时长
16 weeks
期刊介绍: An international, peer-reviewed, open access, online journal. The journal is committed to the rapid publication of the latest laboratory and clinical findings in the fields of diabetes, metabolic syndrome and obesity research. Original research, review, case reports, hypothesis formation, expert opinion and commentaries are all considered for publication.
期刊最新文献
Nomogram for Predicting Early AVF Failure in Elderly Diabetic Patients: Methodological and Clinical Considerations [Letter]. Serum Soluble Asialoglycoprotein Receptor 1: A Potential Predictor Marker Linked to Type 2 Diabetes Mellitus, Demonstrating Positive Correlation With High Sensitive C-Reactive Protein. Finerenone Ameliorates High Glucose-Induced Podocytes Epithelial-Mesenchymal Transition Through the Regulation of Krüppel-Like Factor 5 in Diabetic Nephropathy. Association of KCNJ11 E23K/rs5219 Gene Polymorphism with Type 2 Diabetes and Diabetes-Related Cardiovascular Disease. Pituitary-Thyroid Hormones and Related Indices in Euthyroid Type 2 Diabetes: Association With Thyroid Nodules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1