AI-Driven View Guidance System in Intra-Cardiac Echocardiography Imaging.

IF 4.4 2区 医学 Q2 ENGINEERING, BIOMEDICAL IEEE Transactions on Biomedical Engineering Pub Date : 2025-01-24 DOI:10.1109/TBME.2025.3533485
Jaeyoung Huh, Paul Klein, Gareth Funka-Lea, Puneet Sharma, Ankur Kapoor, Young-Ho Kim
{"title":"AI-Driven View Guidance System in Intra-Cardiac Echocardiography Imaging.","authors":"Jaeyoung Huh, Paul Klein, Gareth Funka-Lea, Puneet Sharma, Ankur Kapoor, Young-Ho Kim","doi":"10.1109/TBME.2025.3533485","DOIUrl":null,"url":null,"abstract":"<p><p>Intra-cardiac echocardiography (ICE) is a crucial imaging modality used in electrophysiology (EP) and structural heart disease (SHD) interventions, providing real-time, high-resolution views from within the heart. Despite its advantages, effective manipulation of the ICE catheter requires significant expertise, which can lead to inconsistent outcomes, especially among less experienced operators. To address this challenge, we propose an AI-driven view guidance system that operates in a continuous closed-loop with human-in-the-loop feedback, designed to assist users in navigating ICE imaging without requiring specialized knowledge. Specifically, our method models the relative position and orientation vectors between arbitrary views and clinically defined ICE views in a spatial coordinate system. It guides users on how to manipulate the ICE catheter to transition from the current view to the desired view over time. By operating in a closed-loop configuration, the system continuously predicts and updates the necessary catheter manipulations, ensuring seamless integration into existing clinical workflows. The effectiveness of the proposed system is demonstrated through a simulation-based performance evaluation using real clinical data, achieving an 89% success rate with 6,532 test cases. Additionally, a semi-simulation experiment with human-in-the-loop testing validated the feasibility of continuous yet discrete guidance. These results underscore the potential of the proposed method to enhance the accuracy and efficiency of ICE imaging procedures.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2025.3533485","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Intra-cardiac echocardiography (ICE) is a crucial imaging modality used in electrophysiology (EP) and structural heart disease (SHD) interventions, providing real-time, high-resolution views from within the heart. Despite its advantages, effective manipulation of the ICE catheter requires significant expertise, which can lead to inconsistent outcomes, especially among less experienced operators. To address this challenge, we propose an AI-driven view guidance system that operates in a continuous closed-loop with human-in-the-loop feedback, designed to assist users in navigating ICE imaging without requiring specialized knowledge. Specifically, our method models the relative position and orientation vectors between arbitrary views and clinically defined ICE views in a spatial coordinate system. It guides users on how to manipulate the ICE catheter to transition from the current view to the desired view over time. By operating in a closed-loop configuration, the system continuously predicts and updates the necessary catheter manipulations, ensuring seamless integration into existing clinical workflows. The effectiveness of the proposed system is demonstrated through a simulation-based performance evaluation using real clinical data, achieving an 89% success rate with 6,532 test cases. Additionally, a semi-simulation experiment with human-in-the-loop testing validated the feasibility of continuous yet discrete guidance. These results underscore the potential of the proposed method to enhance the accuracy and efficiency of ICE imaging procedures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
期刊最新文献
High-Resolution Whole-Brain Diffusion Tensor Imaging Exploiting Rapid Single-Slab 3D EPI Strategy. Robot-mediated asymmetric connection between humans can improve performance without increasing effort. Unobtrusive Sleep Health Assessment Using Impulse Radar: A Pilot Study in Older People. A Receive-only Frequency Translation System with Automatic Phase Correction for Simultaneous Multi-nuclear MRI/MRS. Acoustic Tweezers for Microscopy of Living Organisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1