GPT-Based Automated Induction: Vulnerability Detection in Medical Software.

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Journal of Biomedical and Health Informatics Pub Date : 2025-02-21 DOI:10.1109/JBHI.2025.3544560
Liangjun Deng, Hang Lei, Fazlullah Khan, Gautam Srivastava, Jingxue Chen, Mainul Haque
{"title":"GPT-Based Automated Induction: Vulnerability Detection in Medical Software.","authors":"Liangjun Deng, Hang Lei, Fazlullah Khan, Gautam Srivastava, Jingxue Chen, Mainul Haque","doi":"10.1109/JBHI.2025.3544560","DOIUrl":null,"url":null,"abstract":"<p><p>Integrating Natural Language Processing (NLP) with Generative Pre-trained Transformer (GPT) models plays a pivotal role in enhancing the accuracy and efficiency of healthcare software, which is essential for patient safety and providing high-quality care. The precision of healthcare software is fundamental to protecting the well-being of the patient. In addition, it can ensure the delivery of superior care, maintain the integrity of healthcare systems, and promote trust and cost-effectiveness. It is necessary to emphasize the importance of software reliability in its development and deployment. Symbolic execution serves as a vital technology in automated vulnerability detection. However, symbolic execution often faces problems such as path explosion, which seriously affects efficiency. Although there have been several studies to reduce the number of computational paths in symbolic execution, this problem remains a major obstacle. Therefore, more efficient solutions are urgently needed to ensure the software security. This paper proposes a large-scale language model(LLM) induction method mitigating path explosion applied to symbolic execution engines. In contrast to traditional symbolic execution engines, which often result in timeout or out-of-memory detection, our approach achieves the task of detecting vulnerabilities in seconds. Furthermore, our proposal improves the scalability of symbolic execution, allowing more extensive and complex programs to be analyzed without significant increases in computational resources or time. This scalability is crucial to tackling modern software systems and improving the efficiency and effectiveness of automated defect verification in healthcare software.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3544560","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating Natural Language Processing (NLP) with Generative Pre-trained Transformer (GPT) models plays a pivotal role in enhancing the accuracy and efficiency of healthcare software, which is essential for patient safety and providing high-quality care. The precision of healthcare software is fundamental to protecting the well-being of the patient. In addition, it can ensure the delivery of superior care, maintain the integrity of healthcare systems, and promote trust and cost-effectiveness. It is necessary to emphasize the importance of software reliability in its development and deployment. Symbolic execution serves as a vital technology in automated vulnerability detection. However, symbolic execution often faces problems such as path explosion, which seriously affects efficiency. Although there have been several studies to reduce the number of computational paths in symbolic execution, this problem remains a major obstacle. Therefore, more efficient solutions are urgently needed to ensure the software security. This paper proposes a large-scale language model(LLM) induction method mitigating path explosion applied to symbolic execution engines. In contrast to traditional symbolic execution engines, which often result in timeout or out-of-memory detection, our approach achieves the task of detecting vulnerabilities in seconds. Furthermore, our proposal improves the scalability of symbolic execution, allowing more extensive and complex programs to be analyzed without significant increases in computational resources or time. This scalability is crucial to tackling modern software systems and improving the efficiency and effectiveness of automated defect verification in healthcare software.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
期刊最新文献
Table of Contents Front Cover IEEE Journal of Biomedical and Health Informatics Information for Authors IEEE Journal of Biomedical and Health Informatics Publication Information Guest Editorial:Application of Computational Techniques in Drug Discovery and Disease Treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1