Boheng Zhang, Zelin Zheng, Yanqi Zhao, Yi Shen, Mingjian Sun
{"title":"MCBTNet: Multi-Feature Fusion CNN and Bi- Level Routing Attention Transformer-based Medical Image Segmentation Network.","authors":"Boheng Zhang, Zelin Zheng, Yanqi Zhao, Yi Shen, Mingjian Sun","doi":"10.1109/JBHI.2025.3545398","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate medical image segmentation is crucial for precise diagnosis and treatment in clinical pathology analysis and surgical navigation. While Convolutional Neural Network (CNN)-based approaches excel in capturing and analyzing local features, they often lose key global context. Transformers, utilizing self-attention mechanisms, address this issue but often overlook localized and multi-scale features while also requiring significant computational resources. To integrate the advantages of CNNs and Transformers to achieve efficient and precise medical image segmentation, we propose a segmentation framework based on multi-feature fusion CNN and Bi-level Routing Attention Transformer (MCBTNet). MCBTNet integrates CNNs and Transformers within a U-shaped encoderdecoder architecture. This configuration not only extracts multi-scale features via the U-shaped structure but also efficiently captures global contextual information through the dynamic sparsity of the Bi-Level Routing Attention Transformer. Our novel Frequency-Channel-Spatial multidimensional attention mechanism is implemented on skip connections, enhancing segmentation accuracy and speed by maximizing multi-scale feature utilization. Finally, MCBTNet obtains the segmentation result by fusing the predictions of different scales. Experimental results on five public datasets demonstrate that MCBTNet outperforms state-of-the-art methods in Dice and HD metrics, with lower computational and memory requirements. The code will be available on https://github.com/670768312/MCBTNet.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3545398","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate medical image segmentation is crucial for precise diagnosis and treatment in clinical pathology analysis and surgical navigation. While Convolutional Neural Network (CNN)-based approaches excel in capturing and analyzing local features, they often lose key global context. Transformers, utilizing self-attention mechanisms, address this issue but often overlook localized and multi-scale features while also requiring significant computational resources. To integrate the advantages of CNNs and Transformers to achieve efficient and precise medical image segmentation, we propose a segmentation framework based on multi-feature fusion CNN and Bi-level Routing Attention Transformer (MCBTNet). MCBTNet integrates CNNs and Transformers within a U-shaped encoderdecoder architecture. This configuration not only extracts multi-scale features via the U-shaped structure but also efficiently captures global contextual information through the dynamic sparsity of the Bi-Level Routing Attention Transformer. Our novel Frequency-Channel-Spatial multidimensional attention mechanism is implemented on skip connections, enhancing segmentation accuracy and speed by maximizing multi-scale feature utilization. Finally, MCBTNet obtains the segmentation result by fusing the predictions of different scales. Experimental results on five public datasets demonstrate that MCBTNet outperforms state-of-the-art methods in Dice and HD metrics, with lower computational and memory requirements. The code will be available on https://github.com/670768312/MCBTNet.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.