Fall-Risk Monitoring in Diverse Terrains Using Dual-Task Learning and Wearable Sensing System.

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Journal of Biomedical and Health Informatics Pub Date : 2025-01-30 DOI:10.1109/JBHI.2025.3536030
Chih-Lung Lin, Yuan-Hao Ho, Fang-Yi Lin, Pi-Shan Sung, Cheng-Yi Huang
{"title":"Fall-Risk Monitoring in Diverse Terrains Using Dual-Task Learning and Wearable Sensing System.","authors":"Chih-Lung Lin, Yuan-Hao Ho, Fang-Yi Lin, Pi-Shan Sung, Cheng-Yi Huang","doi":"10.1109/JBHI.2025.3536030","DOIUrl":null,"url":null,"abstract":"<p><p>As the elderly population grows, falling accidents become more frequent, and the need for fall-risk monitoring systems increases. Deep learning models for fallrisk movement detection neglect the connections between the terrain and fall-hazard movements. This issue can result in false alarms, particularly when a person encounters changing terrain. This work introduces a novel multisensor system that integrates terrain perception sensors with an inertial measurement unit (IMU) to monitor fall-risk on diverse terrains. Additionally, a dual-task learning (DTL) architecture that is based on a modified CNNLSTM model is implemented; it is used to determine fall-risk level and the terrain from sensor signals. Three fall-risk levels - \"normal,\" \"near-fall,\" and \"fall\" - are identified as being associated with \"flat ground,\" \"stepping up,\" and \"stepping down\" terrains. Ten young subjects performed 16 activities on flat and stepping terrains in a laboratory setting, and ten elderly individuals were recruited to perform four activities in the hospital. The accuracies of classification of fall-risk levels and terrains by the proposed system are 97.6% and 95.2%, respectively. The system detects pre-impact fall movements, with a fall prediction accuracy of 97.7% and an average lead time of 329ms for fall trials, revealing the model's effectiveness. The overall monitoring accuracy for elderly individuals is 99.8%, confirming the robustness of the proposed system. This work discusses the impact of sensor type and the model architecture of DTL on the classification of fall-risk levels across various terrains. The results demonstrate that the proposed method is reliable for monitoring the risk of falling.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3536030","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

As the elderly population grows, falling accidents become more frequent, and the need for fall-risk monitoring systems increases. Deep learning models for fallrisk movement detection neglect the connections between the terrain and fall-hazard movements. This issue can result in false alarms, particularly when a person encounters changing terrain. This work introduces a novel multisensor system that integrates terrain perception sensors with an inertial measurement unit (IMU) to monitor fall-risk on diverse terrains. Additionally, a dual-task learning (DTL) architecture that is based on a modified CNNLSTM model is implemented; it is used to determine fall-risk level and the terrain from sensor signals. Three fall-risk levels - "normal," "near-fall," and "fall" - are identified as being associated with "flat ground," "stepping up," and "stepping down" terrains. Ten young subjects performed 16 activities on flat and stepping terrains in a laboratory setting, and ten elderly individuals were recruited to perform four activities in the hospital. The accuracies of classification of fall-risk levels and terrains by the proposed system are 97.6% and 95.2%, respectively. The system detects pre-impact fall movements, with a fall prediction accuracy of 97.7% and an average lead time of 329ms for fall trials, revealing the model's effectiveness. The overall monitoring accuracy for elderly individuals is 99.8%, confirming the robustness of the proposed system. This work discusses the impact of sensor type and the model architecture of DTL on the classification of fall-risk levels across various terrains. The results demonstrate that the proposed method is reliable for monitoring the risk of falling.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
期刊最新文献
Table of Contents Front Cover IEEE Journal of Biomedical and Health Informatics Information for Authors IEEE Journal of Biomedical and Health Informatics Publication Information Guest Editorial:Application of Computational Techniques in Drug Discovery and Disease Treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1