{"title":"Fall-Risk Monitoring in Diverse Terrains Using Dual-Task Learning and Wearable Sensing System.","authors":"Chih-Lung Lin, Yuan-Hao Ho, Fang-Yi Lin, Pi-Shan Sung, Cheng-Yi Huang","doi":"10.1109/JBHI.2025.3536030","DOIUrl":null,"url":null,"abstract":"<p><p>As the elderly population grows, falling accidents become more frequent, and the need for fall-risk monitoring systems increases. Deep learning models for fallrisk movement detection neglect the connections between the terrain and fall-hazard movements. This issue can result in false alarms, particularly when a person encounters changing terrain. This work introduces a novel multisensor system that integrates terrain perception sensors with an inertial measurement unit (IMU) to monitor fall-risk on diverse terrains. Additionally, a dual-task learning (DTL) architecture that is based on a modified CNNLSTM model is implemented; it is used to determine fall-risk level and the terrain from sensor signals. Three fall-risk levels - \"normal,\" \"near-fall,\" and \"fall\" - are identified as being associated with \"flat ground,\" \"stepping up,\" and \"stepping down\" terrains. Ten young subjects performed 16 activities on flat and stepping terrains in a laboratory setting, and ten elderly individuals were recruited to perform four activities in the hospital. The accuracies of classification of fall-risk levels and terrains by the proposed system are 97.6% and 95.2%, respectively. The system detects pre-impact fall movements, with a fall prediction accuracy of 97.7% and an average lead time of 329ms for fall trials, revealing the model's effectiveness. The overall monitoring accuracy for elderly individuals is 99.8%, confirming the robustness of the proposed system. This work discusses the impact of sensor type and the model architecture of DTL on the classification of fall-risk levels across various terrains. The results demonstrate that the proposed method is reliable for monitoring the risk of falling.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3536030","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
As the elderly population grows, falling accidents become more frequent, and the need for fall-risk monitoring systems increases. Deep learning models for fallrisk movement detection neglect the connections between the terrain and fall-hazard movements. This issue can result in false alarms, particularly when a person encounters changing terrain. This work introduces a novel multisensor system that integrates terrain perception sensors with an inertial measurement unit (IMU) to monitor fall-risk on diverse terrains. Additionally, a dual-task learning (DTL) architecture that is based on a modified CNNLSTM model is implemented; it is used to determine fall-risk level and the terrain from sensor signals. Three fall-risk levels - "normal," "near-fall," and "fall" - are identified as being associated with "flat ground," "stepping up," and "stepping down" terrains. Ten young subjects performed 16 activities on flat and stepping terrains in a laboratory setting, and ten elderly individuals were recruited to perform four activities in the hospital. The accuracies of classification of fall-risk levels and terrains by the proposed system are 97.6% and 95.2%, respectively. The system detects pre-impact fall movements, with a fall prediction accuracy of 97.7% and an average lead time of 329ms for fall trials, revealing the model's effectiveness. The overall monitoring accuracy for elderly individuals is 99.8%, confirming the robustness of the proposed system. This work discusses the impact of sensor type and the model architecture of DTL on the classification of fall-risk levels across various terrains. The results demonstrate that the proposed method is reliable for monitoring the risk of falling.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.