Synchronous Rotation-Based Knot Tying on Mini-Incisions Using Dual-Arm Nanorobot

IF 4.5 2区 医学 Q2 ENGINEERING, BIOMEDICAL IEEE Transactions on Biomedical Engineering Pub Date : 2025-01-15 DOI:10.1109/TBME.2025.3528465
Yujie Jiang;Chengxi Zhong;Chao Qin;Zhenhuan Sun;Song Liu
{"title":"Synchronous Rotation-Based Knot Tying on Mini-Incisions Using Dual-Arm Nanorobot","authors":"Yujie Jiang;Chengxi Zhong;Chao Qin;Zhenhuan Sun;Song Liu","doi":"10.1109/TBME.2025.3528465","DOIUrl":null,"url":null,"abstract":"Knot tying is a critical task in robotic surgery, which is considerably important for surgical success and postoperative recovery. Despite of the well-established protocols and significant progress using medical robots at macro scale, the need for automatedly tying mechanically robust knots on mini-incisions remains largely unmet, particularly with relieved suture deformation, avoided suture slippage, reduced workspace consumption, and enhanced precision and biomechanical compatibility. Here, we propose an innovative dual-arm nanorobotic system featured by stereo microscope and additional rotation degree of freedom (DOF) mounted on each arm, enabling automated, precise, and controllable knot tying on mini-incisions. With this system, a synchronous rotation-based knot tying (SRKT) trajectory is designed to mitigate undesired suture deformation, suture slippage, and minimize workspace consumption. The theoretical and simulation analysis of the topology and tension force distribution on suture validated the efficacy of SRKT trajectory. The experiments demonstrated that the dual-arm nanorobotic system with SRKT trajectory can be used for tying various knot types, using different micro-sutures, conducting on mini-incisions of different tissues, especially keeping suture slippage avoidance, minimal workspace, and robust mechanical strength of the tied knots. The proposed dual-arm nanorobotic system and SRKT trajectory render a significant potential for various practical medical applications.","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"72 6","pages":"1920-1930"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10842512/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Knot tying is a critical task in robotic surgery, which is considerably important for surgical success and postoperative recovery. Despite of the well-established protocols and significant progress using medical robots at macro scale, the need for automatedly tying mechanically robust knots on mini-incisions remains largely unmet, particularly with relieved suture deformation, avoided suture slippage, reduced workspace consumption, and enhanced precision and biomechanical compatibility. Here, we propose an innovative dual-arm nanorobotic system featured by stereo microscope and additional rotation degree of freedom (DOF) mounted on each arm, enabling automated, precise, and controllable knot tying on mini-incisions. With this system, a synchronous rotation-based knot tying (SRKT) trajectory is designed to mitigate undesired suture deformation, suture slippage, and minimize workspace consumption. The theoretical and simulation analysis of the topology and tension force distribution on suture validated the efficacy of SRKT trajectory. The experiments demonstrated that the dual-arm nanorobotic system with SRKT trajectory can be used for tying various knot types, using different micro-sutures, conducting on mini-incisions of different tissues, especially keeping suture slippage avoidance, minimal workspace, and robust mechanical strength of the tied knots. The proposed dual-arm nanorobotic system and SRKT trajectory render a significant potential for various practical medical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用双臂纳米机器人在微型切口上同步旋转打结
打结是机器人手术中的一项关键任务,对手术成功和术后恢复相当重要。尽管已有完善的方案和在宏观尺度上使用医疗机器人的重大进展,但在微小切口上自动打结机械坚固的需求仍然很大程度上没有得到满足,特别是减轻缝合变形,避免缝合滑动,减少工作空间消耗,提高精度和生物力学相容性。在这里,我们提出了一种创新的双臂纳米机器人系统,其特点是立体显微镜和附加的旋转自由度(DOF)安装在每条手臂上,实现自动、精确和可控的小切口打结。使用该系统,同步旋转打结(SRKT)轨迹可以减轻不希望的缝合变形、缝合滑移,并最大限度地减少工作空间消耗。通过理论分析和仿真分析,验证了SRKT弹道的有效性。实验表明,采用SRKT轨迹的双臂纳米机器人系统可用于打结各种类型的结,使用不同的微缝合线,对不同组织的小切口进行打结,尤其具有避免缝合线打滑、工作空间小、打结结机械强度强等优点。提出的双臂纳米机器人系统和SRKT轨迹为各种实际医疗应用提供了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
期刊最新文献
Shear Wave Anisotropic Imaging for Pennate Muscle Assessment Using a Tilted Supersonic Push with Elliptical Analytical Inversion. A Birdcage Volume Transmit Coil and 8 Channel Receive Array for Marmoset Brain Imaging at 7T. A Hybrid Distributed Capacitance Birdcage Coil for Small-Animal MR Imaging at 14.1 T. GONet: A Generalizable Deep Learning Model for Glaucoma Detection. Phase Correction of MR Spectroscopic Imaging Data Using Model-Based Signal Estimation and Extrapolation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1