High fault-tolerant DNA image storage system based on VAE.

IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS IEEE Transactions on NanoBioscience Pub Date : 2025-02-21 DOI:10.1109/TNB.2025.3544401
Yuyang Lu, Zhihao Zhang, Jing Yang, Cheng Zhang
{"title":"High fault-tolerant DNA image storage system based on VAE.","authors":"Yuyang Lu, Zhihao Zhang, Jing Yang, Cheng Zhang","doi":"10.1109/TNB.2025.3544401","DOIUrl":null,"url":null,"abstract":"<p><p>DNA-based storage has emerged as a promising storage paradigm due to its immense storage potential. However, the error-prone nature of DNA sequencing and synthesis processes limits this potential. Image data is typically compressed before storage, and even a single mismatch can lead to catastrophic error propagation during decompression, rendering the image unrecoverable. To reduce the error rate of DNA storage-based image compression, we have designed a high fault-tolerant DNA image storage system and applied it to image compression for DNA storage. This system achieves significant improvements in both image data compression ratio and resilience through three key innovations: 1) Using a Variational Autoencoder (VAE) to compress the image into uniformly sized latent variable blocks, followed by further compression via Singular Value Decomposition (SVD); 2) Quantizing the floating-point numbers in the latent variable blocks and applying rotational coding to the resulting ternary sequences, effectively ensuring positive constraints on homopolymer run lengths and GC content; 3) Optimizing the error-correction scheme to best recover each type of error by quantizing it back to its original value. Through image scaling, we adjust the compression ratio, and the comparative results of image compression simulations demonstrate the performance of the proposed model, highlighting its superiority in fault tolerance and storage density.</p>","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"PP ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on NanoBioscience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1109/TNB.2025.3544401","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

DNA-based storage has emerged as a promising storage paradigm due to its immense storage potential. However, the error-prone nature of DNA sequencing and synthesis processes limits this potential. Image data is typically compressed before storage, and even a single mismatch can lead to catastrophic error propagation during decompression, rendering the image unrecoverable. To reduce the error rate of DNA storage-based image compression, we have designed a high fault-tolerant DNA image storage system and applied it to image compression for DNA storage. This system achieves significant improvements in both image data compression ratio and resilience through three key innovations: 1) Using a Variational Autoencoder (VAE) to compress the image into uniformly sized latent variable blocks, followed by further compression via Singular Value Decomposition (SVD); 2) Quantizing the floating-point numbers in the latent variable blocks and applying rotational coding to the resulting ternary sequences, effectively ensuring positive constraints on homopolymer run lengths and GC content; 3) Optimizing the error-correction scheme to best recover each type of error by quantizing it back to its original value. Through image scaling, we adjust the compression ratio, and the comparative results of image compression simulations demonstrate the performance of the proposed model, highlighting its superiority in fault tolerance and storage density.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 VAE 的高容错 DNA 图像存储系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on NanoBioscience
IEEE Transactions on NanoBioscience 工程技术-纳米科技
CiteScore
7.00
自引率
5.10%
发文量
197
审稿时长
>12 weeks
期刊介绍: The IEEE Transactions on NanoBioscience reports on original, innovative and interdisciplinary work on all aspects of molecular systems, cellular systems, and tissues (including molecular electronics). Topics covered in the journal focus on a broad spectrum of aspects, both on foundations and on applications. Specifically, methods and techniques, experimental aspects, design and implementation, instrumentation and laboratory equipment, clinical aspects, hardware and software data acquisition and analysis and computer based modelling are covered (based on traditional or high performance computing - parallel computers or computer networks).
期刊最新文献
A High Sensitive Nanomaterial Coated Side Polished Fiber Sensor for Detection of Cardiac Troponin I Antibody. Synthesis of heteroatom doped polymer coated nanomaterials for slow and controlled drug release in the physiological microenvironment. Spatial Pattern Switching Strategy: a Successful Application in the Bimolecular Model. High fault-tolerant DNA image storage system based on VAE. DNA-CBIR: DNA Translation Inspired Codon Pattern-based Deep Image Feature Extraction for Content-based Image Retrieval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1