500 MHz Inductive Birdcage RF Coil for Brain MRI: Design, Implementation and Validation

IF 4.5 2区 医学 Q2 ENGINEERING, BIOMEDICAL IEEE Transactions on Biomedical Engineering Pub Date : 2025-01-23 DOI:10.1109/TBME.2025.3529725
Joe Murphy-Boesch;Jacco A de Zwart;Peter van Gelderen;Stephen J Dodd;Frank Mauconduit;Alexandre Vignaud;Nicolas Boulant;Alan P Koretsky;Jeff H Duyn;Natalia Gudino
{"title":"500 MHz Inductive Birdcage RF Coil for Brain MRI: Design, Implementation and Validation","authors":"Joe Murphy-Boesch;Jacco A de Zwart;Peter van Gelderen;Stephen J Dodd;Frank Mauconduit;Alexandre Vignaud;Nicolas Boulant;Alan P Koretsky;Jeff H Duyn;Natalia Gudino","doi":"10.1109/TBME.2025.3529725","DOIUrl":null,"url":null,"abstract":"<italic>Objective:</i> We present a 500 MHz inductive birdcage RF resonator for imaging the human brain in an 11.7 T MRI scanner. <italic>Methods:</i> A homogenous circularly polarized transmit field (<inline-formula><tex-math>$\\text{B}_{1}^{+}$</tex-math></inline-formula>) was generated by transmitting power to the resonator through four couplers driven in differential mode and with an incremental 90-degree phase delay. A detailed mechanical and electrical model of the hardware, loaded with different phantoms, was generated and its performance simulated using a finite-difference time-domain method. <italic>Results:</i> The head-size inductively coupled birdcage presented a fundamental mode at 500 MHz. MR thermometry maps were in good agreement with heating profiles estimated from simulated SAR maps <italic>Conclusion:</i> The model of the hardware was validated through both bench and MRI measurements. <italic>Significance:</i> This validation is important for future analysis of radiofrequency safety and performance at ultra-high field MRI through the prediction of SAR and <inline-formula><tex-math>$\\text{B}_{1}^{+}$</tex-math></inline-formula> profiles across different human brain models at various positions inside the coil.","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"72 6","pages":"1983-1992"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10851431/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: We present a 500 MHz inductive birdcage RF resonator for imaging the human brain in an 11.7 T MRI scanner. Methods: A homogenous circularly polarized transmit field ($\text{B}_{1}^{+}$) was generated by transmitting power to the resonator through four couplers driven in differential mode and with an incremental 90-degree phase delay. A detailed mechanical and electrical model of the hardware, loaded with different phantoms, was generated and its performance simulated using a finite-difference time-domain method. Results: The head-size inductively coupled birdcage presented a fundamental mode at 500 MHz. MR thermometry maps were in good agreement with heating profiles estimated from simulated SAR maps Conclusion: The model of the hardware was validated through both bench and MRI measurements. Significance: This validation is important for future analysis of radiofrequency safety and performance at ultra-high field MRI through the prediction of SAR and $\text{B}_{1}^{+}$ profiles across different human brain models at various positions inside the coil.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于脑磁共振成像的 500 MHz 感应鸟笼射频线圈:设计、实施和验证。
目的:我们展示了一种 500 MHz 感应式鸟笼射频谐振器,用于在 11.7 T 磁共振成像扫描仪中对人脑进行成像。通过以差分模式驱动的四个耦合器和递增 90 度的相位延迟,向谐振器发射功率,从而产生一个同质圆极化发射场(B1 +)。利用有限差分时域法生成了硬件的详细机械和电气模型,并对其性能进行了模拟。通过工作台和磁共振成像测量对模型进行了验证。通过预测不同人脑模型在线圈内不同位置的 SAR 和 B1 + 曲线,这一验证对未来的射频安全和性能分析非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
期刊最新文献
A Birdcage Volume Transmit Coil and 8 Channel Receive Array for Marmoset Brain Imaging at 7T. A Hybrid Distributed Capacitance Birdcage Coil for Small-Animal MR Imaging at 14.1 T. GONet: A Generalizable Deep Learning Model for Glaucoma Detection. Phase Correction of MR Spectroscopic Imaging Data Using Model-Based Signal Estimation and Extrapolation. Continuous Wrist Angle Estimation Under Different Resistance Based on Dynamic EMG Decomposition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1