Max J Griesgraber, Lique M Coolen, Kayla M Onslow, Jacob R Corey, Rachel E Rice, Eliana G Aerts, Elizabeth C Bowdridge, Steven L Hardy, Michael N Lehman, Robert L Goodman, Stanley M Hileman
{"title":"Critical role of arcuate nucleus kisspeptin and Kiss1R in regulation of the ovine luteinizing hormone surge.","authors":"Max J Griesgraber, Lique M Coolen, Kayla M Onslow, Jacob R Corey, Rachel E Rice, Eliana G Aerts, Elizabeth C Bowdridge, Steven L Hardy, Michael N Lehman, Robert L Goodman, Stanley M Hileman","doi":"10.1111/jne.70010","DOIUrl":null,"url":null,"abstract":"<p><p>Hypothalamic kisspeptin (Kiss), neurokinin B (NKB), and dynorphin-containing (KNDy) neurons in the arcuate nucleus (ARC) have consistently been shown to be the central generator of gonadotropin-releasing hormone (GnRH) and corresponding luteinizing hormone (LH) pulses in mammals and possibly contribute to surge secretion as well. Additionally, recent evidence from experiments in sheep suggests that ARC Kiss1R-containing neurons play an important role in regulating the timing and amplitude of LH pulses. In this study, we examined the functional role of ARC KNDy and Kiss1R-containing neurons in ovine LH surge secretion via injection of saporin-ligand conjugates (SAP) to ablate these neural populations. NKB-SAP injections significantly reduced the percentage of ARC Kiss1 (~65% decrease) cells compared to control animals, and a surge-like increase of LH was prevented in ewes with the greatest degree of Kiss1 cell ablation. Kiss-SAP injections had no effect on Kiss1 cell percentage or ARC Kiss1R cell number compared to controls, the latter perhaps due to Kiss1R suppression in control animals from elevated estradiol concentrations during the LH surge. However, Kiss-SAP injections consistently and robustly decreased LH surge amplitude, with 80% of Kiss-SAP-treated ewes failing to generate a surge. While the exact identity of these ARC Kiss1R neurons has yet to be fully elucidated, they likely act downstream or in concert with KNDy neurons and possibly integrate other surge-centric signaling pathways to generate the ovine LH surge. These results support the conclusion that KNDy neurons contribute significantly to the ovine LH surge, while ARC Kiss1R neurons appear to be necessary for a functional surge to occur in sheep.</p>","PeriodicalId":16535,"journal":{"name":"Journal of Neuroendocrinology","volume":" ","pages":"e70010"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroendocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jne.70010","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Hypothalamic kisspeptin (Kiss), neurokinin B (NKB), and dynorphin-containing (KNDy) neurons in the arcuate nucleus (ARC) have consistently been shown to be the central generator of gonadotropin-releasing hormone (GnRH) and corresponding luteinizing hormone (LH) pulses in mammals and possibly contribute to surge secretion as well. Additionally, recent evidence from experiments in sheep suggests that ARC Kiss1R-containing neurons play an important role in regulating the timing and amplitude of LH pulses. In this study, we examined the functional role of ARC KNDy and Kiss1R-containing neurons in ovine LH surge secretion via injection of saporin-ligand conjugates (SAP) to ablate these neural populations. NKB-SAP injections significantly reduced the percentage of ARC Kiss1 (~65% decrease) cells compared to control animals, and a surge-like increase of LH was prevented in ewes with the greatest degree of Kiss1 cell ablation. Kiss-SAP injections had no effect on Kiss1 cell percentage or ARC Kiss1R cell number compared to controls, the latter perhaps due to Kiss1R suppression in control animals from elevated estradiol concentrations during the LH surge. However, Kiss-SAP injections consistently and robustly decreased LH surge amplitude, with 80% of Kiss-SAP-treated ewes failing to generate a surge. While the exact identity of these ARC Kiss1R neurons has yet to be fully elucidated, they likely act downstream or in concert with KNDy neurons and possibly integrate other surge-centric signaling pathways to generate the ovine LH surge. These results support the conclusion that KNDy neurons contribute significantly to the ovine LH surge, while ARC Kiss1R neurons appear to be necessary for a functional surge to occur in sheep.
期刊介绍:
Journal of Neuroendocrinology provides the principal international focus for the newest ideas in classical neuroendocrinology and its expanding interface with the regulation of behavioural, cognitive, developmental, degenerative and metabolic processes. Through the rapid publication of original manuscripts and provocative review articles, it provides essential reading for basic scientists and clinicians researching in this rapidly expanding field.
In determining content, the primary considerations are excellence, relevance and novelty. While Journal of Neuroendocrinology reflects the broad scientific and clinical interests of the BSN membership, the editorial team, led by Professor Julian Mercer, ensures that the journal’s ethos, authorship, content and purpose are those expected of a leading international publication.