Dual encapsulation of curcumin and ciprofloxacin in chitosan nanoparticles attenuates Pseudomonas aeruginosa virulence, elastinolytic potential and quorum sensing genes

IF 3.3 3区 医学 Q3 IMMUNOLOGY Microbial pathogenesis Pub Date : 2025-03-01 DOI:10.1016/j.micpath.2025.107438
Hosna Allahyari , Leila Shamsini , Hojjatolah Zamani
{"title":"Dual encapsulation of curcumin and ciprofloxacin in chitosan nanoparticles attenuates Pseudomonas aeruginosa virulence, elastinolytic potential and quorum sensing genes","authors":"Hosna Allahyari ,&nbsp;Leila Shamsini ,&nbsp;Hojjatolah Zamani","doi":"10.1016/j.micpath.2025.107438","DOIUrl":null,"url":null,"abstract":"<div><div><em>Pseudomonas aeruginosa</em> is an important human pathogen that is responsible for various human infections and able to develop resistance to a variety of antibiotics. Drug encapsulation may provide sustained and more efficient drug delivery, particularly in case of the drugs with low bioavailability. This study aims to characterize the antivirulence and anti-quorum sensing (QS) properties of curcumin and ciprofloxacin dually encapsulated in chitosan NPs (Cur-Cip-CsNPs). The nanoparticles were synthesized and characterized by SEM, FT-IR, Zeta Potential, and DLS analyses. The antibacterial and antivirulence effects of the Cip-CsNPs, Cur-CsNPs, and Cur-Cip-CsNPs against <em>P. aeruginosa</em> strains were investigated by well diffusion, biofilm and pyocyanin quantification, swarming, swimming, twitching, and proteolytic and elastinolytic activity assays. The mRNA transcript levels of the <em>lasIR</em> and <em>lasAB</em> genes were also determined by real-time PCR. Cur-Cip-CsNPs were more potent antibacterial agents against <em>P. aeruginosa</em> compared with other NPs and inhibited bacterial planktonic growth at 160 mg/mL, reduced biofilm formation by 72.5–86.5 % and pyocyanin levels by 80.2–80.6 %, and significantly inhibited flagellar and fimbrial motility of <em>P. aeruginosa</em>. Furthermore, bacterial proteolysis and elastinolytic activity were reduced more efficiently by Cur-Cip-CsNPs compared with other nanoformulations. The expression of the <em>lasI</em>, <em>lasR</em>, <em>lasA,</em> and <em>lasB</em> was attenuated more efficiently by Cur-Cip-CsNPs compared with Cip-CsNPs and Cur-CsNPs. This study presents an innovative approach to overcome the challenges due to antibiotic resistance and provides a new therapeutic option against <em>P. aeruginosa</em> infections.</div></div>","PeriodicalId":18599,"journal":{"name":"Microbial pathogenesis","volume":"202 ","pages":"Article 107438"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial pathogenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0882401025001639","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pseudomonas aeruginosa is an important human pathogen that is responsible for various human infections and able to develop resistance to a variety of antibiotics. Drug encapsulation may provide sustained and more efficient drug delivery, particularly in case of the drugs with low bioavailability. This study aims to characterize the antivirulence and anti-quorum sensing (QS) properties of curcumin and ciprofloxacin dually encapsulated in chitosan NPs (Cur-Cip-CsNPs). The nanoparticles were synthesized and characterized by SEM, FT-IR, Zeta Potential, and DLS analyses. The antibacterial and antivirulence effects of the Cip-CsNPs, Cur-CsNPs, and Cur-Cip-CsNPs against P. aeruginosa strains were investigated by well diffusion, biofilm and pyocyanin quantification, swarming, swimming, twitching, and proteolytic and elastinolytic activity assays. The mRNA transcript levels of the lasIR and lasAB genes were also determined by real-time PCR. Cur-Cip-CsNPs were more potent antibacterial agents against P. aeruginosa compared with other NPs and inhibited bacterial planktonic growth at 160 mg/mL, reduced biofilm formation by 72.5–86.5 % and pyocyanin levels by 80.2–80.6 %, and significantly inhibited flagellar and fimbrial motility of P. aeruginosa. Furthermore, bacterial proteolysis and elastinolytic activity were reduced more efficiently by Cur-Cip-CsNPs compared with other nanoformulations. The expression of the lasI, lasR, lasA, and lasB was attenuated more efficiently by Cur-Cip-CsNPs compared with Cip-CsNPs and Cur-CsNPs. This study presents an innovative approach to overcome the challenges due to antibiotic resistance and provides a new therapeutic option against P. aeruginosa infections.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbial pathogenesis
Microbial pathogenesis 医学-免疫学
CiteScore
7.40
自引率
2.60%
发文量
472
审稿时长
56 days
期刊介绍: Microbial Pathogenesis publishes original contributions and reviews about the molecular and cellular mechanisms of infectious diseases. It covers microbiology, host-pathogen interaction and immunology related to infectious agents, including bacteria, fungi, viruses and protozoa. It also accepts papers in the field of clinical microbiology, with the exception of case reports. Research Areas Include: -Pathogenesis -Virulence factors -Host susceptibility or resistance -Immune mechanisms -Identification, cloning and sequencing of relevant genes -Genetic studies -Viruses, prokaryotic organisms and protozoa -Microbiota -Systems biology related to infectious diseases -Targets for vaccine design (pre-clinical studies)
期刊最新文献
Is there a link between exposure to pesticides and antibiotic resistance in Gram-negative bacteria isolated from Thai farmers? Expressions of selected microRNAs in gastric cancer patients and their association with Helicobacter pylori and its cag pathogenicity island. Novel circular antimicrobial peptides to combat a critical listed bacterial pathogen Multi drug resistant Acinetobacter baumannii. Evaluating the Efficacy of Doripenem against Staphylococcus aureus in Vancomycin-Resistant Strains. Dual encapsulation of curcumin and ciprofloxacin in chitosan nanoparticles attenuates Pseudomonas aeruginosa virulence, elastinolytic potential and quorum sensing genes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1