Botanical sources, biopharmaceutical profile, anticancer effects with mechanistic insight, toxicological and clinical evidence of prunetin: a literature review.

IF 2.8 4区 医学 Q2 ONCOLOGY Medical Oncology Pub Date : 2025-03-03 DOI:10.1007/s12032-025-02646-z
Sumaya Akter Bithi, Md Sakib Al Hasan, Md Shimul Bhuia, Emon Mia, Noshin Tasnim Yana, Ali Mohamod Wasaf Hasan, Mohammed Burhan Uddin, Md Abu Sayeed, Yasin Emon, Rubel Hasan, Raihan Chowdhury, Muhammad Torequl Islam
{"title":"Botanical sources, biopharmaceutical profile, anticancer effects with mechanistic insight, toxicological and clinical evidence of prunetin: a literature review.","authors":"Sumaya Akter Bithi, Md Sakib Al Hasan, Md Shimul Bhuia, Emon Mia, Noshin Tasnim Yana, Ali Mohamod Wasaf Hasan, Mohammed Burhan Uddin, Md Abu Sayeed, Yasin Emon, Rubel Hasan, Raihan Chowdhury, Muhammad Torequl Islam","doi":"10.1007/s12032-025-02646-z","DOIUrl":null,"url":null,"abstract":"<p><p>Prunetin (PRU), a naturally occurring flavonoid, has gained recognition for its wide-ranging therapeutic benefits, though its anticancer properties have yet to be extensively reviewed. This study explores the potential of PRU in targeting critical molecular pathways involved in tumor progression, including oxidative stress, apoptosis, cell cycle regulation, and metastasis. Data were compiled from reputable sources, including PubMed, Springer Link, Scopus, Wiley Online, Web of Science, ScienceDirect, and Google Scholar. The findings emphasize PRU's ability to mitigate oxidative stress, promote apoptosis, and regulate the cell cycle in cancer cells. Its anti-inflammatory and anti-angiogenic properties further enhance its effectiveness against cancer. Mechanistic studies reveal that PRU suppresses oncogenic pathways such as PI3K/Akt/mTOR (Phosphoinositide 3-kinase/Protein kinase B/Mammalian target of rapamycin) while activating tumor-suppressor mechanisms. Experimental models show that PRU effectively inhibits cancer cell proliferation and metastasis. Additionally, PRU exhibits favorable pharmacokinetics, demonstrating high intestinal absorption (95.5%), good Caco-2 permeability, and metabolism via CYP1A2, CYP2C19, CYP2C9, and CYP3A4, though it has poor blood-brain barrier (BBB) permeability and limited aqueous solubility, posing challenges for systemic bioavailability. Beyond its anticancer properties, PRU displays broad pharmacological relevance, including anti-inflammatory, cardioprotective, neuroprotective, anti-obesity, and osteoprotective effects, mediated through pathways, such as NF-κB, MAPK, and AMPK. Toxicological studies indicate a favorable safety profile, with low cytotoxicity in normal cells and no significant toxicity at high doses in preclinical models. While clinical evidence on PRU remains limited, studies on structurally related isoflavones suggest promising therapeutic potential, necessitating further clinical trials to establish its efficacy and safety in humans.</p>","PeriodicalId":18433,"journal":{"name":"Medical Oncology","volume":"42 4","pages":"87"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12032-025-02646-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Prunetin (PRU), a naturally occurring flavonoid, has gained recognition for its wide-ranging therapeutic benefits, though its anticancer properties have yet to be extensively reviewed. This study explores the potential of PRU in targeting critical molecular pathways involved in tumor progression, including oxidative stress, apoptosis, cell cycle regulation, and metastasis. Data were compiled from reputable sources, including PubMed, Springer Link, Scopus, Wiley Online, Web of Science, ScienceDirect, and Google Scholar. The findings emphasize PRU's ability to mitigate oxidative stress, promote apoptosis, and regulate the cell cycle in cancer cells. Its anti-inflammatory and anti-angiogenic properties further enhance its effectiveness against cancer. Mechanistic studies reveal that PRU suppresses oncogenic pathways such as PI3K/Akt/mTOR (Phosphoinositide 3-kinase/Protein kinase B/Mammalian target of rapamycin) while activating tumor-suppressor mechanisms. Experimental models show that PRU effectively inhibits cancer cell proliferation and metastasis. Additionally, PRU exhibits favorable pharmacokinetics, demonstrating high intestinal absorption (95.5%), good Caco-2 permeability, and metabolism via CYP1A2, CYP2C19, CYP2C9, and CYP3A4, though it has poor blood-brain barrier (BBB) permeability and limited aqueous solubility, posing challenges for systemic bioavailability. Beyond its anticancer properties, PRU displays broad pharmacological relevance, including anti-inflammatory, cardioprotective, neuroprotective, anti-obesity, and osteoprotective effects, mediated through pathways, such as NF-κB, MAPK, and AMPK. Toxicological studies indicate a favorable safety profile, with low cytotoxicity in normal cells and no significant toxicity at high doses in preclinical models. While clinical evidence on PRU remains limited, studies on structurally related isoflavones suggest promising therapeutic potential, necessitating further clinical trials to establish its efficacy and safety in humans.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical Oncology
Medical Oncology 医学-肿瘤学
CiteScore
4.20
自引率
2.90%
发文量
259
审稿时长
1.4 months
期刊介绍: Medical Oncology (MO) communicates the results of clinical and experimental research in oncology and hematology, particularly experimental therapeutics within the fields of immunotherapy and chemotherapy. It also provides state-of-the-art reviews on clinical and experimental therapies. Topics covered include immunobiology, pathogenesis, and treatment of malignant tumors.
期刊最新文献
Macrophage-derived lncRNAs in cancer: regulators of tumor progression and therapeutic targets. Prodelphinidin from purple sweet potato induces apoptosis in human triple-negative breast cancer cells via ROS-mediated ER stress activation. Nanomaterials in gastric cancer: pioneering precision medicine for diagnosis, therapy, and prevention. Bone marrow mesenchymal stem cells enrich breast cancer stem cell population via targeting metabolic pathways. Effects of royal jelly on ovary cancer cells proliferation and apoptosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1