Advances and Challenges of Tissue Vascular Scaffolds and Supercritical Carbon Dioxide Technology in Cardiovascular Diseases.

IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING Tissue engineering and regenerative medicine Pub Date : 2025-03-03 DOI:10.1007/s13770-025-00710-3
Horng-Ta Tseng, Yi-Wen Lin, Shih-Ying Sung, Yi-Ting Tsai, Chen-Wei Liu, Po-Shun Hsu, Chien-Sung Tsai, Feng-Yen Lin
{"title":"Advances and Challenges of Tissue Vascular Scaffolds and Supercritical Carbon Dioxide Technology in Cardiovascular Diseases.","authors":"Horng-Ta Tseng, Yi-Wen Lin, Shih-Ying Sung, Yi-Ting Tsai, Chen-Wei Liu, Po-Shun Hsu, Chien-Sung Tsai, Feng-Yen Lin","doi":"10.1007/s13770-025-00710-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Atherosclerosis often leads to ischemic heart disease and peripheral artery disease. Traditional revascularization technique such as bypass grafting using autologous vessels are commonly employed. However, limitations arise when patients lack suitable grafts due to underlying diseases or previous surgeries, prompting the need to substitute vessel grafts. Due to the high biocompatibility of decellularized products (grafts or scaffolds) prepared using supercritical carbon dioxide (ScCO<sub>2</sub>), it has been widely applied in decellularization-related technologies in recent years. Therefore, this review article will comprehensively discuss the current developments in tissue vascular scaffolds applied to the treatment of cardiovascular diseases, with a particular focus on the application of supercritical carbon dioxide technology in this field and the challenges it faces.</p><p><strong>Method: </strong>This review was compiled by searching relevant references on PubMed database (before June 2024) based on selected key words and specific terms.</p><p><strong>Results: </strong>ScCO<sub>2</sub> is an effective and eco-friendly extraction agent widely used in industries like food, pharmaceuticals, and cosmetics. It has been applied in decellularization processes to obtain extracellular matrices (ECMs) from tissues. ScCO<sub>2</sub> technology has emerged as a promising method in cardiovascular disease treatment, particularly for developing tissue vascular scaffolds. ScCO<sub>2</sub> effectively removes cellular components while preserving the ECM, ensuring high biocompatibility and reduced immune response. It has been applied to decellularize tissues like heart valves and arteries, creating scaffolds that mimic natural ECM to support cell proliferation and tissue regeneration. Despite challenges such as solubility limitations and cost, ScCO<sub>2</sub> offers advantages like low toxicity and ease of use, making it a valuable tool in advancing regenerative medicine for cardiovascular applications.</p><p><strong>Conclusion: </strong>ScCO<sub>2</sub> has the advantages of low cellular toxicity, cost-effectiveness, and ease of manipulation. These characteristics have the potential to lead to significant progress in cardiovascular research on tissue regeneration.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering and regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13770-025-00710-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Atherosclerosis often leads to ischemic heart disease and peripheral artery disease. Traditional revascularization technique such as bypass grafting using autologous vessels are commonly employed. However, limitations arise when patients lack suitable grafts due to underlying diseases or previous surgeries, prompting the need to substitute vessel grafts. Due to the high biocompatibility of decellularized products (grafts or scaffolds) prepared using supercritical carbon dioxide (ScCO2), it has been widely applied in decellularization-related technologies in recent years. Therefore, this review article will comprehensively discuss the current developments in tissue vascular scaffolds applied to the treatment of cardiovascular diseases, with a particular focus on the application of supercritical carbon dioxide technology in this field and the challenges it faces.

Method: This review was compiled by searching relevant references on PubMed database (before June 2024) based on selected key words and specific terms.

Results: ScCO2 is an effective and eco-friendly extraction agent widely used in industries like food, pharmaceuticals, and cosmetics. It has been applied in decellularization processes to obtain extracellular matrices (ECMs) from tissues. ScCO2 technology has emerged as a promising method in cardiovascular disease treatment, particularly for developing tissue vascular scaffolds. ScCO2 effectively removes cellular components while preserving the ECM, ensuring high biocompatibility and reduced immune response. It has been applied to decellularize tissues like heart valves and arteries, creating scaffolds that mimic natural ECM to support cell proliferation and tissue regeneration. Despite challenges such as solubility limitations and cost, ScCO2 offers advantages like low toxicity and ease of use, making it a valuable tool in advancing regenerative medicine for cardiovascular applications.

Conclusion: ScCO2 has the advantages of low cellular toxicity, cost-effectiveness, and ease of manipulation. These characteristics have the potential to lead to significant progress in cardiovascular research on tissue regeneration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Tissue engineering and regenerative medicine
Tissue engineering and regenerative medicine CELL & TISSUE ENGINEERING-ENGINEERING, BIOMEDICAL
CiteScore
6.80
自引率
5.60%
发文量
83
审稿时长
6-12 weeks
期刊介绍: Tissue Engineering and Regenerative Medicine (Tissue Eng Regen Med, TERM), the official journal of the Korean Tissue Engineering and Regenerative Medicine Society, is a publication dedicated to providing research- based solutions to issues related to human diseases. This journal publishes articles that report substantial information and original findings on tissue engineering, medical biomaterials, cells therapy, stem cell biology and regenerative medicine.
期刊最新文献
Intranasal Administration of Human Neural Crest-Derived Nasal Turbinate Stem Cells Attenuates Microglia Activity in Mild Head Trauma Models. Advances and Challenges of Tissue Vascular Scaffolds and Supercritical Carbon Dioxide Technology in Cardiovascular Diseases. Polynucleotide and Hyaluronic Acid Mixture for Skin Wound Dressing for Accelerated Wound Healing. Preparation of Highly Functional Spheroid of Endocrine Cells Based on Thermosensitive Glycol Chitosan. Synthesis of Autotaxin-Inhibiting Lipid Nanoparticles to Regulate Autophagy and Inflammatory Responses in Activated Macrophages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1