Deep Learning of Proteins with Local and Global Regions of Disorder.

ArXiv Pub Date : 2025-03-29
Oufan Zhang, Zi Hao Liu, Julie D Forman-Kay, Teresa Head-Gordon
{"title":"Deep Learning of Proteins with Local and Global Regions of Disorder.","authors":"Oufan Zhang, Zi Hao Liu, Julie D Forman-Kay, Teresa Head-Gordon","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Although machine learning has transformed protein structure prediction of folded protein ground states with remarkable accuracy, intrinsically disordered proteins and regions (IDPs/IDRs) are defined by diverse and dynamical structural ensembles that are predicted with low confidence by algorithms such as AlphaFold. We present a new machine learning method, IDPForge (Intrinsically Disordered Protein, FOlded and disordered Region GEnerator), that exploits a transformer protein language diffusion model to create all-atom IDP ensembles and IDR disordered ensembles that maintains the folded domains. IDPForge does not require sequence-specific training, back transformations from coarse-grained representations, nor ensemble reweighting, as in general the created IDP/IDR conformational ensembles show good agreement with solution experimental data, and options for biasing with experimental restraints are provided if desired. We envision that IDPForge with these diverse capabilities will facilitate integrative and structural studies for proteins that contain intrinsic disorder.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875298/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although machine learning has transformed protein structure prediction of folded protein ground states with remarkable accuracy, intrinsically disordered proteins and regions (IDPs/IDRs) are defined by diverse and dynamical structural ensembles that are predicted with low confidence by algorithms such as AlphaFold. We present a new machine learning method, IDPForge (Intrinsically Disordered Protein, FOlded and disordered Region GEnerator), that exploits a transformer protein language diffusion model to create all-atom IDP ensembles and IDR disordered ensembles that maintains the folded domains. IDPForge does not require sequence-specific training, back transformations from coarse-grained representations, nor ensemble reweighting, as in general the created IDP/IDR conformational ensembles show good agreement with solution experimental data, and options for biasing with experimental restraints are provided if desired. We envision that IDPForge with these diverse capabilities will facilitate integrative and structural studies for proteins that contain intrinsic disorder.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有局部和全局无序区域的蛋白质的深度学习。
虽然机器学习已经以惊人的精度改变了折叠蛋白质基态的蛋白质结构预测,但内在无序蛋白质和区域(IDPs/IDRs)是由多种动态结构集合定义的,这些结构集合是由AlphaFold等算法以低置信度预测的。我们提出了一种新的机器学习方法,IDPForge(内在无序蛋白,折叠和无序区域生成器),它利用变形蛋白语言扩散模型来创建维持折叠区域的全原子IDP集成和IDR无序集成。IDPForge不需要序列特定的训练,也不需要从粗粒度表示进行反向转换,也不需要集成重加权,因为通常创建的IDP/IDR构象集成与解决方案实验数据表现出良好的一致性,并且如果需要,还提供了根据实验限制进行偏倚的选项。我们设想具有这些不同功能的IDPForge将促进包含内在紊乱的蛋白质的整合和结构研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proton therapy range uncertainty reduction using vendor-agnostic tissue characterization on a virtual photon-counting CT head scan. Human-like AI-based Auto-Field-in-Field Whole-Brain Radiotherapy Treatment Planning With Conversation Large Language Model Feedback. MethConvTransformer: A Deep Learning Framework for Cross-Tissue Alzheimer's Disease Detection. Non-dilemmatic social dynamics promote cooperation in multilayer networks. Computational Analysis of Disease Progression in Pediatric Pulmonary Arterial Hypertension.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1