A Vascularized Multilayer Chip Reveals Shear Stress-Induced Angiogenesis in Diverse Fluid Conditions.

IF 10.5 Q1 ENGINEERING, BIOMEDICAL Cyborg and bionic systems (Washington, D.C.) Pub Date : 2025-02-28 eCollection Date: 2025-01-01 DOI:10.34133/cbsystems.0207
Tao Yue, Huiying Yang, Yue Wang, Ning Jiang, Hongze Yin, Xiaoqi Lu, Na Liu, Yichun Xu
{"title":"A Vascularized Multilayer Chip Reveals Shear Stress-Induced Angiogenesis in Diverse Fluid Conditions.","authors":"Tao Yue, Huiying Yang, Yue Wang, Ning Jiang, Hongze Yin, Xiaoqi Lu, Na Liu, Yichun Xu","doi":"10.34133/cbsystems.0207","DOIUrl":null,"url":null,"abstract":"<p><p>Tissues larger than 400 μm in size lacking microvascular networks cannot survive for long periods of time in vitro. The development of microfluidic technology provides an efficient research tool for constructing microvascular models in vitro. However, traditional single-layer microfluidic chips faced the limitation of spatial layout and could not provide diverse fluidic environments within a single chip. In this paper, we present a novel microfluidic chip design with a 3-layer configuration that utilizes a polycarbonate (PC) porous membrane to separate the culture fluid channels from the tissue chambers, featuring flexibly designable multitissue chambers. PC porous membranes act as the capillary in the vertical direction, enabling precise hydrogel patterning and successfully constructing a microfluidic environment suitable for microvascular tissue growth. The chip demonstrates the ability to build microvascular networks of different shapes such as triangle, rectangle, and inverted triangle on a single chip for more than 10 days. The microvascular networks cultured for 12 days were successfully perfused with 70-kDa fluorescein isothiocyanate, which indicated that the generated networks had good barrier properties. A correlation between tissue chamber shape and shear stress was demonstrated using COMSOL, and a preliminary validation of the flow direction of interstitial flow and the important effect of shear stress on microvascular growth was demonstrated by vascularization experiments. This flexible and scalable design is ideal for culturing multiple vascularized organ tissues on a single microfluidic chip, as well as for studying the effects of different fluidic factors on microvascular growth.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"6 ","pages":"0207"},"PeriodicalIF":10.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870090/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyborg and bionic systems (Washington, D.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/cbsystems.0207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tissues larger than 400 μm in size lacking microvascular networks cannot survive for long periods of time in vitro. The development of microfluidic technology provides an efficient research tool for constructing microvascular models in vitro. However, traditional single-layer microfluidic chips faced the limitation of spatial layout and could not provide diverse fluidic environments within a single chip. In this paper, we present a novel microfluidic chip design with a 3-layer configuration that utilizes a polycarbonate (PC) porous membrane to separate the culture fluid channels from the tissue chambers, featuring flexibly designable multitissue chambers. PC porous membranes act as the capillary in the vertical direction, enabling precise hydrogel patterning and successfully constructing a microfluidic environment suitable for microvascular tissue growth. The chip demonstrates the ability to build microvascular networks of different shapes such as triangle, rectangle, and inverted triangle on a single chip for more than 10 days. The microvascular networks cultured for 12 days were successfully perfused with 70-kDa fluorescein isothiocyanate, which indicated that the generated networks had good barrier properties. A correlation between tissue chamber shape and shear stress was demonstrated using COMSOL, and a preliminary validation of the flow direction of interstitial flow and the important effect of shear stress on microvascular growth was demonstrated by vascularization experiments. This flexible and scalable design is ideal for culturing multiple vascularized organ tissues on a single microfluidic chip, as well as for studying the effects of different fluidic factors on microvascular growth.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
21 weeks
期刊最新文献
Structural Optimization of Microfluidic Chips for Enhancing Droplet Manipulation and Observation via Electrodynamics Simulation. Platinum Wire-Embedded Culturing Device for Interior Signal Recording from Lollipop-Shaped Neural Spheroids. A Vascularized Multilayer Chip Reveals Shear Stress-Induced Angiogenesis in Diverse Fluid Conditions. Enhanced Digital Light Processing-Based One-Step 3-Dimensional Printing of Multifunctional Magnetic Soft Robot. Piezoelectric Energy Harvesting from the Thorax Vibration of Freely Flying Bees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1